
AD-A124 621 THE REMOTE LINK UNIT: A DEMONSTRATION OF OPERATIONAL i
PERFORMANCE PART III..(U) HOUSTON UNIV TX DEPT OF7
ELECTRICAL ENGINEERING C J TAVORA ET AL. AUG 81

UNCLASSIFIED AFUAL-TR-81-1131-PT3i F336i5 86 C 1895 F/G 17/2 M

smomhohh ol IEomhhmhhhEohhhE
EohhhshmhhhhhE

L6.

ILL

1.5.l4 6

py FtSOLUION EST HAA

v~c~co t63-
' H____ 9UEA OFs32D~

....... _3

SAFWAL-TR-81-1131
PART III, VOLUME 1

THE REMOTE LINK UNIT: A DEMONSTRATION OF OPERATIONAL PERFORMANCE

Part III- Design Manual

Volume 1

C. J. Tavora
J. R. Glover, Jr.
M. A. Smither

Electrical Engineering Department
University of Houston
4800 Calhoun Boulevard
Houston, Texas 77004

August 1981

Final Report for Period 1 April 1980 to 31 December 1980

Approved for public release; distribution unlimited. D TF C
C:)
C. FEB1 71983
LUJ

W. A
AVIONICS LABORATORY

C AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

8.. . . . IV 46 -loc

NOTICE

When Government drawings, specifications, or other data are used for any purpose
. other than in connection with a definitely related Government procurement operation,
-. the United States Government thereby incurs no responsibility nor any obligation

whatsoever; and the fact that the government may have formulated, furnished, or in
any way supplied the said drawings, specifications, or other data, is not to be re-
garded by implication or otherwise as in any manner licensing the holder or any
other person or corporation, or conveying any rights or permission to manufacture
use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA) and is
'. releasable to the National Technical Information Service (NTIS). At NTIS, it will

be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

PHILIP C. GOLDMAN DONALD L. MOON, Chief
Project Engineer Information Processing Technology Branch
Information Transfer Group Avionics Laboratory
Avionics Laboratory

-. FOR THE COMMANDER

RICHARD H. BOIVIN, Colonel, USAF
Chief, System Avionics Division
Avionics Laboratory

- "If your address has changed, if you wish to be removed from our mailing list, or
* :f the addressee is no longer employed by your organization please notify AFWALIAAAT,
* W-PAFB, OH 45433 to help us maintain a current mailing list".

Copies of this report should not be returned unless return is required by security
* considerations, contractual obligations, or notice on a specific docume~nt.

4o

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (5Mm. Dole Entered _________________

REPORT DOCUMENTATION PAGE BEFORE COPEIGFORM
1. REPORT NUMBER 1GOTACSINNO: 3. RECIPIENT'S CATALOG NUMBER

AFWAL-TR-81-1131, Part III, Vol1 4) /Y 6 (
4.TTE(nSutte S. TYPE OF REPORT 6 PERIOD COVERED

THE REMOTE LINK UNIT: A DEMONSTRATION OF FnlRprtfrPro
OPERATIONAL PERFORMANCE 1 Apr 80 to 31 Dec 80

* -PART III - Design Manual S. PERFORMING ORG. REPORT NUMMER

Volume 1 ______________

* 7. AUTHOR(a) S. CONTRACT OR GRANT NUMBER(s)
,C.~.Tavora, J.R. Glover, Jr., N.A. Smither, F31-0C19

*.H. Collins, W.C. Law, P.D. Balsaver, H.C. Hsia, F31-0c19
and T.T. Lin

*9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
Elecricl Eginerin DeartentAREA & WORK UNIT NUMBERS
Elecricl Eginerin Deartent62204F

University of Houston
4800 Calhoun, Houston, TX 77004 20 80

1I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

-; ~Avionics Laboratory (AFWAL/AAAT-3)Aust18
(AFSC)13. NUMBER OF PAGESAF Wright Aeronautical Laboratories (AS)229

YrM1§ht--PA1rt-~rgt.A U_____________
I4 MNTORING AGEN1CY' AM1& ADR 0S(I dfrent from Controiling Office) t5. SECURITY CLASS. (of this report)

Unclassified
I5a. DECLASSI FICATION/ DOWNGRADING

SCHEDULE

7 IS. DISTRIBUTION STATEMENT (of this Report)

*Approved for public release; distribution unlimited.

* 17. DISTRIBUTION STATEMENT (of the abstract mntered in Block 20, it different fromt Report)

IS. SUPPLEMENTARY NOTES

Distributed Avionics, Fault Monitoring, Fault Recording.

20. ABSTRACT (Continue an reverse side it necessary mid identify by biock number)

This report is Part III, Design Manual for the RLU Demonstration System, and
provides detailed information on the hardware and software design. It is in
two volumes: Volume 1 contains the description of the design, and Volume 2
contains the Appendices. Accompanying reports are Part I Summary and Part II
User's Manual.

DD I ~~Fl 147 EDITION or I NOV 5 15 OBSOLETE Ucasfe

SECURITY CLASSIFICATION OF THIS PAGE (Woen Date Entered)

PREFACE

"a

This document was prepared by the University of Houston, Houston, Texas,
on Air Force Contract No. F33615-80-C-1095, entitled "The Remote Link Unit - A
Demonstration of Operational Performance."

The work was administered under the direction of the Information Transfer
Group, Information Processing Technology Branch, System Avionics Division of
the Avionics Laboratory, under Project 2003, "Avionic System Design
Technology," Task 08, "Multiplex and Information Transfer Technology," Work
Unit 07, "Remote Link Unit Demonstration." The work was performed during the
period 1 April 1980 to 31 December 1980 and this report was submitted in
August 1981. The Air Force Project Engineer was Philip C. Goldman
(AFWAL/AAAT-3).

The work is a continuation of a previous feasibility study entitled, "The
Remote Link Unit: An. Advanced Remote Terminal for MIL-STD-1553A." The
results of this study are documented in a technical report entitled, "Remote
Link Unit Functional Design: An Advanced Remote Terminal for MIL-STD-1553B,"
which was published as AFAL-TR-79-1176, AD-A080126. An add-on to this pre-
vious study resulted in a second technical report entitled, "The Remote Link
Unit: Applications to the Design for Repair Methodology Program," published
as AFWAL-TR-80-1033, AD-A086126.

This report summarizes the design, development, and testing accomplished
under the contracted work. The Principal Investigator and Program Manager was
Dr. Carlos J. Tavora. Drs. John Glover, Jr. and Miles A. Smither were Co-
Investigators. Dr. Tavora was responsible for the system architecture and
modularization of the design. Dr. Glover supervised the design of the soft-
ware for the Link Manager Simulator and the Link Module. He was assisted by
Messrs. Hao-Cheng Hsia, William C. Law, and Parmanand Balsaver. Dr. Smither
was assisted by Mr. Tzer-Tsan Lin in the design of the Interface Configuration
Adapter. Mr. H. Mitchell Collins was in charge of the design of the

* Electronic Nameplate and the Nameplate Interface Controller.

This report is organized in three parts: Part I - Summary, Part II -
User's Manual, and Part III - Design Manual. Part III is separated into two
volumes: Volume I is the main body of the Design Manual, while Volume 2
contains the appendices.

This is Volume 1 of Part III, Design Manual. It describes the detailed
hardware and software design of the RLUDS, and is organized such that major
sections relate to each functional subsystem within the RLUDS.

0000 0

4, 4.' r,
0.- 0

: " " - " , -' ' . _ ". ," "" ,' . _' "", ,"" , _. , '" - _. - ''_ ": . '. _ "" " . ' " ' . ,or " '-"V_,. "

71-77

TABLE OF CONTENTS

SECTION PAGE

1 INTRODUCTION 1

1.1 THE RLU DEMONSTRATION UNIT 1

1.2 DESIGN CONSTRAINTS 1

1.3 TEST PROCEDURE 3

1.4 ORGANIZATION OF THE MANUAL 4

2 LINK MODULE 5

2.1 DESIGN PHILOSOPHY..................5

2.1.1 Description 5

2.1.2 Design Philosophy 5

2.1.3 Implementation 7

2.2 HARDWARE DESIGN 7

2.2.1 Link Module Hardware Decomposition 7

2.2.2 Modules and Address Assignments 12

2.2.3 Shared Memory Interface Card 12

2.2.4 Front Panel/ICA Card 19

2.2.5 NIC/Timer Card 21

2.3 SOFTWARE DESIGN 21

2.3.1 Link Module Software Decomposition 21

2.3.2 Real-Time Executive 24

2.3.3 Update Task 42

2.3.4 ICA Handler............ 45

2.3.5 SIC Handler 57

2.3.6 Shared Memory Handler 69

V

-~~~~~O -- - ..

TABLE OF CONTENTS (CONT'D.)

SECTION PAGE

2.3.7 Interrupt Service Routine. 81

2.3.8 Command Interpreter 81

2.3.9 Nonresident Software. 91

3 INTERFACE CONFIGURATION ADAPTER 96

3.1 SIGNAL I/O CHANNEL DESIGN. 97

3.1.1 Analog Input Processing.10

3.1.2 Digital Input Processing102

3.1.3 Contact Closure Processing. 103

3.1.4 Analog Output Processing 104

3.1.5 Digital Output Processing107

3.2 REFERENCE GENERATION 107

3.2.1 400 Hz AC Reference.10

3.2.2 +10.00 and +5.00 vdc References 110

3.2.3 HI, LO, and THREShold Level References . . . 110

3.3 ADDRESS DECODING AND CONFIGURATION CONTROL... 1

3.3.1 Address Decoding. 1

3.3.2 Configuration Control. 115

3.4 SERIAL I/O DESIGN 118

3.4.1 Serial Output 120

3.4.2 Serial Input-Refresh Mode. 121

3.4.3 Serial Input-Flag Mode 121

4 SUBSYSTEM INFORMAO ICHNCHAL L.....124

4.1 USE OF A SUBSYSTEM INFORMATION CHANNEL126

4.1.1 Electronic Nameplate Comandsu.. 126

vi

- - ,,-

TABLE OF CONTENTS (CONT'D.)

SECTION PAGE

4.1.2 Nameplate Interface Controller Registers . 132

4.1.3 Nameplate's Data Structure 142

4.2 ELECTRONIC NAMEPLATE DESIGN 145

4.2.1 Hardware Design. 145

4.2.2 Software Design 156

4.3 PROCESSOR INTERFACE TO THE SIC....... 161

4.3.1 Nameplate Interface Controller Design . . . 161

4.3.2 SIC Handler Design 171

5 LINK MANAGER 172

5.1 DESIGN OBJECTIVES 172

5.2 SOFTWARE DESIGN OVERVIEW 173

5.2.1 General Features 173

5.2.2 Structure of the Simulator 174

5.3 COMMAND INTERPRETER (CI) TASK 178

5.3.1 LMG Commands 183

5.3.2 LM Function Commands 183

5.3.3 HP Co-mands 186

5.4 SHARED MEMORY DISPLAY (SMD) TASK 188

5.5 DATA TRANSFER ROUTINES 188

5.5.1 Data Transfer Handshake Protocol 191

5.5.2 Data Transfer Modules 194

5.6 UTILITY ROUTINES 195

5.6.1 Data Conversion Routines 195

5.6.2 Data Transfer Routines 195

vii

,2..: ~~~~~~ ~ ~ ~-.:..v.........-v.....-....-....................... .. .

",.4
* -.

TABLE OF CONTENTS (CONT'D.)

SECTION PAGE

5.6.3 Miscellaneous Utility Routines 196

5.7 SM HANDLER 196

5.7.1 SM Handler Functions 197

5.8 DRl1-C DRIVER 200

5.9 DEMONSTRATION EXAMPLE 200

6 SUBSYSTEMS 215 .

6.1 SERIAL SUBSYSTEM......... 215

6.1.1 Hardware Design 216

6.1.2 Software Design 2. .- 220

6.1.3 Nameplate Data * 222

6.2 SYNCHRO SUBSYSTEM 223

* 6.2.1 Hardware Design 223

" 6.2.2 Software Design 226

6.2.3 Nameplate Data 228

APPENDIX A - SOURCE CODE TAPE DIRECTORY 230

APPENDIX B - HARDWARE SCHEMATICS 234

APPENDIX C - SOFTWARE FLOW CHARTS 317

REFERENCES 875

viii

7-17

LIST OF ILLUSTRATIONS

FIGURE PAGE

I RLUDS implementation of the RLU 2

2 RLUDS Configuration 2

3 Link Module Hardware Architecture 6

4 Link Module Enclosures.......... 8

5 LM Front Panel 11

6 LMBack Panel 13

7 LMMemory Map 14

8 SM Block Diagram 16

9 Handshake between the LMG and LM for (a) Read, (b) Write and
* (c) Read-Modify-Write 17

10 SM Timing Diagram 18

11 FP/ICA Card Block Diagram 20

12 Executive Interactions 22

13 Transition of States 26

14 The Real-Time Executive and Services 36

15 Interaction of the Executive, 41

16 Update Task Structure 44

17 Update Task Interactions 46

18 Memory Map of ICA Buffers 47

19 Parameter Table Set-up by Macro 50

20 ICA Handler Structure.............. ... 55

21 ICA Handler Subroutines and their Hierarchy 56

22 SIC Status Byte in Shared Memory 58

23 SIC Status Table o.......................... 59

ix

, ,., - _ - , ,,;..,- •-.. -........ .-. ---... -. . . ,

i q ~~* .. -. - , . o,*o o o ° - ., .. . -, . , ** . -. .- ... -

LIST OF ILLUSTRATIONS (COUT'D.)

FIGURE PAGE

24 Format of SIC Handler's UFT 65
2j.

25 SIC Handler Task 67

26 SMHND Flowchart 74

27 SMHND Calling Parameters Table 75

28 SM Memory Map 77

29 INT Flowchaz 83

30 CMDITR Flowchart 88

31 LNFI Flowchart 89

32 Comm-and Interpreter Interactions 93

33 Decomposition of the ICA into Sections 98

34 Block Diagram of a Signal I/0 Channel 99

35 Block Diagram of a Reference Generation System 108

36 Block Diagram of the Address Decoding Section 112

37 Memory Map of ICA Buffers 114

38 ICA Configuration Words 116

39 Block Diagram of the Serial I/0 Section 119

40 Serial Control Byte- ..123

41 The Subsystem Information Channel 5

42 NP Diagnostic Result Data Bytes 131

43a SIC Comand Byte Structure 134

43b SIC Cosmaud Response Byte Structure134

44a Nameplate Status Byte 135

44b Brror Diagnostic Byte 136

45a SIC Status Register 137

45b SIC Control Register 137

x

LIST OF ILLUSTRATIONS (CONT'D.)

FIGURE PAGE

46a SIC Communication Control/Status Register140

46b SIC Communication Data Register 141

47 Nameplate Directory Structure 144

48 Subsystem Performance Record146

49 Electronic Nameplate Block Diagram 148

50 SIC Bus Connections 154

51 Nameplate Main Program..... 157

52 Nameplate Diagnostic Program160

53 Nameplate Interface Controller Block Diagram 166

54 Block Diagram of LMG Simulator 175

55 Block biagram of LMG Simulator System 176

56 Structure of the Command Interpreter Task...... 179

57 Structure of Shared Memory Display Task.: ;-, " 189

58 Layout of Shared Memory Display 190

59 Data Transfer Handshake Protocol 192

60 Structure of the Data Transfer Modules...... 193

61 Handshake between the LMG and LM for (a) Read, (b) Write and
(c) Read-Modify-Write *201

',6 2 I n d i r e c t C o m m a d F i l e R 2 A . D EM 2 0
63 Indirect Command File R2B.DEM 204

I

, 64 Indirect Command File R2C.DEM205

65a Display on CRT #........................ 206

65b Display on CRT #1207

65c Display on CRT #1209

65d Display on CRT #1 210

xi

il~n a~mi....................... . --.......... ~...-. *. - *--. * .---- /.,....../----._,-. .. ,

LIST OF ILLUSTRATIONS (CONT'D.)

FIGURE PAGE

66a SM Display on CRT #2. 211

66b SM Display on CRT #2. 212

66c SM Display on CRT #2. 213

67 Block Diagram of Serial Sending Subsystem..... 21

68 Block Diagram of Serial Receiving Subsystem. 219

6.9 Serial 1/0Program 221

70 Map of Nameplate Data for Serial Subsystem..... 24

71 Synchro Implementations.............. 25

72 Synchro I/O Program................... 27

73 Map of Nameplate Data f or Synchro Subsystem.... 29

xii

.A

LIST OF TABLES

TABLE PAGE

I Link Module Main Chassis Cards 10

2 Link Module Tasks 23

3 Programs and Their Functions 37

4 List of Global Common Variables 40

5 ICA Configurations 49

6 ICA Handler Status 53

7 SIC Handler Functions 61

8 SIC Handler Request Status Codes 66

9 SIC Handler Hierarchy 68

10 SMHND Functions 71

11 SMHND Status Return Codes 72

12 IRQSources 32

13 LM Commands 84

14 CMDITR Status Return Codes 86

15 LM Command Parameters 92

16 Nameplate Commands 133

17 Electronic Nameplate Specifications 147

18 NP Status Display 153

19 SIC Bus Signals 155

20 Nameplate Program Directory 158

21 Nameplate Interrupt Handlers 162

22 Nameplate Global Common 163

23 RDCOMM-Read Co--and Local Common 164

xiii

;,; ¢.-.-..... .. ,,......,


~~~~~~~~~~~~~~~~. .=.= ,.........-.i-......... . i 
'  

" , -

LIST OF TABLES (CONT'D.)

TABLE PAGE

24 Write Memory Local Common ...... .................. ... 165

25 Nameplate Interface Controller Specifications .......... ... 168

26 NIC Registers ......... ........................ ... 169

27 LMG Commands ......... ........................ ... 181

28 LM Function Command ....... ..................... ... 182

29 MP Commands ........ ......................... .... 184

30 Functions of SMH .................. .... 198

xiv

-A !.I



LIST OF ACRONYMS

AC Alternating Current
A/D Analog to Digital
BCD Binary Coded Decimal
CMOS Complementary Metal Oxide Semiconductor
CPU Central Processing Unit
CRT Cathode Ray Tube
D/A Digital to Analog
DC Direct Current
DIP Dual In-line Package
DMA Direct Memory Access
EAROM Electrically Alterable ROM
EEPROM Electrically Erasable Programumble ROM
EPROM Erasable Programmable ROM
FP Front Panel
ICA Interface Configuration Adapter
I/0 Input/Output
ISR Interrupt Service Routine
LA Link Address
LM Link Module
LMG Link Manager
LiP LM Processor
LSB Least Significant Bit

MP Maintenance Port
MSB Most Significant Bit
HUX Multiplexer
NIC Nameplate Interface Controller
NP Nameplate
PCB Printed Circuit Board
PIA Peripheral Interface Adapter
PROM Programable Read Only Memory
RAM Random Access Memory
RLU Remote Link Unit
RLUDS Remote Link Unit Demonstration System
RMW Read-Modify-Write
ROM Read Only Memory
RT Remote Terminal
SIC Subsystem Information Channel
SM Shared Memory
SRU Shop Replaceable Unit
TTL Transistor-Transistor Logic
UFT User File Table

'v



SECTION 1

.2 .INTRODUCTION

2 This document is a design manual for the Remote Link Unit Demonstration

System (RLUDS). The Remote Link Unit (RLU) is a new design concept for re-

mote terminals. This document contains detailed design information on the

RLUDS. Design and implementation of the RLUDS was performed for the Air

Force Wright Aeronautical Laboratories under contract #F33615-80-C-1095.

1.1 THE RLU DEMONSTRATION UNIT

--The RLUDS described in this design manual is an operational hardware

breadboard prototype that performs most of the important RLU functions The

RLUDS is not intended to be a complete RLU -prototype but it demonstrates

the most unique parts of the RLU. Shis effort has demonstrated the feasi-

bility of implementation of the Link Module (LM), the Interface Configura-

tion Adapter (ICA), the Electronic Nameplate (NP) and the Interface between

the Link Module and the Link Manager. The Link Manager (LMG) was simulated

with a PDP-11 computer. The extent of RLU implementation encompassed by

the demonstration unit is illustratedin Figure 1. The detailed design of

the RLUDS is based on the functional deign described in the document,

"Remote Link Unit Functional Design: An Advanced Remote Terminal for

MIL-STD-1553B" technical report AFAL-TR-79-1176. he configuration of the

RLUDS is presente n Figure 2.

1.2 DESIGN CONSTRAINTS

In order to implement the RLUDS within a short time span, it was im-
%1

...



SHARED MEMORY SUBSYSTEM\

*C I

MULTIPLEX rM
BUS A

LINK I - RLUDS IMPLEMENTATION
MANAGER
(LMG)

MULTIPLEX

I REMOTE LINK UNIT
(RLU1)I

L----------------------

Figure 1 RLUDS Implementation of the RLU

LINK MANAGER (LMG)
SIMULATOR

LINK MODULE (LM)

UNIVRSAL SUBSYSTEM

MAIPRTCNANORE
PORT NP

OPERATORD Cnfguato

CONSLE UIVERAL SNCH2

LMG LM CONCO.USSE



perative to limit the design effort to the development of components which

were nonexistent and constituted critical elements for verification of the

RLU concepts. In order to accommodate use of off-the-shelf components, it

was necessary for the RLUDS design to deviate from the RLU functional de-

sign (document AFAL-TR-79-1176). Some of the required deviations are

identified in the statement of work for the RLUDS. Other deviations have

been identified in the process of designing the demonstration system. In

each case, a deviation to the functional design was allowed when it related

a change that did not alter the RLU concept to be evaluated, but rather

represented a design scaling of electrical or timing dimensions. The most

significant difference between the RLU functional design and the RLUDS

stems from the use of an 8 bit microprocessor for implementation of the

Link Module. This selection,which was dictated by the available micropro-

cessor development facilities at the University of Houston,led to an 8-bit

LM internal bus instead of the 16-bit bus described in the functional de-

sign. Use of the 8-bit LM internal bus has caused corresponding dimensional

changes in the Interface Configuration Adapter, the Nameplate Interface

Controller and the Shared Memory.

1.3 TEST PROCEDURE

A test plan that outlines the approach used to demonstrate the oper-

ational performance of the RLU is presented in the document entitled, "A

Test Plan for the Remote Link Unit Demonstration System." This test plan

describes a three part test procedure that demonstrates the operation of the

Interface Configuration Adapter, the Subsystem Information channel and the

Remote Link Unit.

3



L-

1.4 ORGANIZATION OF THE MANUAL

This manual has been organized in a manner that simplifies the docu-

mentation of the RLUDS design. Sections 2 through 5 describe the major

RLUDS components in terms of the theory of operation, the hardware design,

the software design and the test procedure. Section 2 describes the Link

Module. Section 3 describes the design of the Interface Configuration

Adapter. Section 4 describes the Subsystem Information Channel which in-

cludes the Nameplate Interface Controller, the nameplate bus and the

Electronic Nameplate. Section 5 describes the Link Manager simulator and

the software required to support the RLUDS demonstration. Section 6

describes the serial and synchro subsystems used in the RLU demonstration.

The detailed hardware diagrams and parts lists are contained in Appendix

SB . The detailed software description is presented in Appendix C

4

.......................- *



SECTION 2

LINK MODULE

2.1 DESIGN PHILOSOPHY

2.1.1 DESCRIPTION

The Link Module (LM) consists of a parallel bus structure with

Motorola 6800 Processor, PROM, RAM, and three separate interfaces as shown

in Figure 3. Each interface connects to the common bus structure of the

processor chassis. There is a Shared Memory (SM) interface to the Link

*Manager (LMG) through which all communication between the LM and the LMG

takes place. There is a Nameplate Interface Controller (NIC) interface to

the subsystem nameplates for serial conmmunication between the LM and the

NP's on the Subsystem Information Channel (SIC) bus. There is a parallel

digital interface to the Interface Configuration Adaptor (ICA) for communi-

cation between the LM and the ICA.

2.1.2 DESIGN PHILOSOPHY

The Link Module (LM) is the intelligent link between the Link

Manager (LMG) and the subsystems. It consists of a processor with three

interfaces.

The following design goals were established for the Link Module

design:

1) Minimize hardware fabrication.

2) Utilize off-the-shelf items.

3) Concentrate development effort on conceptual features of the
RLU not yet demonstrated as feasible.

4) Provide built-in trouble shooting capability through the use
of

5

- . .-. N *



LM
ICA

Front Panel]

Front Panel

IInterface SUBSYSTEM
I ___________ Configuration DATA

Adapter *CHANNEL
SHARED(IA SC

LINK MEMORY LMT
MANAGER ProcessorI

PoLMP)
I (SM) Nameplate iSUBSYSTEM

(NIC) ICHANNEL

Figure 3 Link Module Hardware Architecture

6



* Modularized enclosures,

• Front panel status indicators, and

* A software monitor debugger.

2.1.3 IMPLEMENTATION

The microprocessor 6800 was chosen for the LM implementation since

it met the processing requirements and substantial hardware and software

development support for this processor is available at the Digital Control

and Automation System Laboratory at the University of Houston.

The LM is distributed among two chassis as shown in Figure 4

Except for the ICA which is housed in the top chassis all other LM components

are housed in the main chassis. The main chassis is a Motorola chassis with

a card cage and bus system that accepts a variety of off-the-shelf modules

for the 6800 system.

2.2 HARDWARE DESIGN

2.2.1 LINK MODULE HARDWARE DECOMPOSITION

The Link Module (LM) hardware comprises two chassis: main chassis

and extension chassis. The main chassis holds power supplies, card cage

with various cards (the processor, program memory, data memory, Shared Mem-

ory, Nameplate Interface Controller, bus connections to the Interface Con-

figuration Adaptor), front panel and back panel.

The extension chassis houses the ICA and mounts directly on top

of the main chassis and contains 3 circuit boards, a front panel and a back

panel. The ICA front panel displays ICA configuration information which is

useful for monitoring the interface operation. The back panel is used for

power and signal connections.



Chassis

Main
Chassis

4Figure 4 Link Module Enclosures

8



The cards in the main chassis are listed in Table 1 The chassis

(Motorola P/N M68MMLC) contains a triple DC output power supply (+5V, +12V,

-12V) and a 10 slot card cage. Two additional voltage supplies have been

installed in the main chassis: a dual DC output (+15V, -15V) for the ICA,

and a single DC output (+25V) for the NP. The CPU card (Motorola P/N

M68MMi0IA2) contains a Motorola 6800 eight bit processor, 1 MHz crystal con-

trolled clock, 1K byte read/write memory (not used in the LM implementation),

four sockets for 2716 EPROMs (2K bytes each of program memory), four eight

bit parallel digital ports (not used in the LM implementation), and one

serial RS-232C data terminal interface (used by the M68MM08A ROM for system

debugging). A program memory card (Motorola P/N M68MM04A) provides sixteen

sockets for 2716 EPROMs for 32K bytes of additional program memory space.

Data memory is provided by a Motorola MEX6816-1HR which has 16K bytes of

read/write memory. Three custom interface cards (SM, NIC, FP/ICA) are based

on Motorola MEX68USM universal interface cards which provide address decod-

ping and bus buffering.
*i The extension chassis houses the ICA. This chassis has three

circuit cards: a control/processor interface module and two signal I/O

interface cards (one for each ICA group). The ICA extension chassis fits

physically on top of the LM main chassis.

A front panel layout is shown in Figure 5 . Located on the front

panel are various display indicators, facility to write into Shared Memory,

power on/off switch, and a reset button. Additionally, the extension

chassis front panel has various ICA status indicators.

The main chassis back panel has the AC power input, three fuses

(I15VAC to LM, +5VDC to NP, +25VDC to NP), a fan for air circulation, a

9



Table 1

LINK MODULE MAIN CHASSIS CARDS

slot # Card # Description Connectors

1 1 FP & ICA INTCBL 500 to Front Panel
£INTCBL 200 to ICA.

2 - Empty ---

3 3 PROM None

4 4 RAM None

5 Em!~pty

6 6 NIC INTCBL 300 to NP.

7 - Empty ---

8 8 CPU INTCBL 400 to CRT.

9 9 SM INTCBL 100 to LMG.

10 - mpty ---

10



A *14

I 
iT , 

0 )



connector to the LMG for communication through Shared Memory, a connector

to the Electronic Nameplate, connector to a data terminal for system de-

* . bugging, and a toggle switch for choosing the restart vectors (auto or

monitor). The extension chassis back panel has three fuses (+5VDC, +l5VDC,

-15VDC) and a connector to the subsystem.

2.2.2 MODULES AND ADDRESS ASSIGNMENTS

The address assignment for each LM module is shown on the memory

map presented in Figure 7 which shows the Motorola M6800 address space

of 64K bytes. All addresses shown in this figure are expressed as hexa-

decimal numbers (base 16). The 16K data memory is in the lower addresses

from 0000 to 3FFF, with the 1K byte on the CPU card disabled to avoid

address conflicts. The program memory card has two independent 16K blocks.

The first block (addresses 400 to 7FFF) contains the software tasks EXEC,

-* UPDATE, ISR, CMDITR, part of NPHND, and ICAHND. The second block uses only

one quarter of its address space (8800 to 97FF) and contains the software

tasks SMHND and the rest of the NPHND. The SM and NP fit into addresses

8000 to 83FF. Addresses 8400 to 87FF are used for parallel and serial I/0

on the CPU card. The ICA and front panel interface modules fit into

addresses 9800 to 98FF. The Motorola M68MM08A MICRObug ROM monitor resides

in addresses F800 to FFFF (a back panel switch may be used to enable the

monitor mode of operation).

2.2.3 SHARED MEMORY INTERFACE CARD

The Link Manager (LMG) and the Link Module (LM) perform all of

their communications through a shared memory interface consisting of 256

bytes of read/write memory. The LM makes its accesses to SM directly,

12



. . . .

-I

.~, *t .~..

;...' *r-

-i -____ __________________

444 ~;i\ ..

0O
* 6O OS 6

k4 I '-4

~ a)- I
SI~I1I

U
tO

H

cc
~S4

I

13



HICRObug

FSOPF

ROS served 31rP PIA's

ICA

aodumdift ISF

Beef I'

I ACIA to CRT
ADS* on CPU eard

8400
HIC

9006 6300

I SM PIAsees $ISO
NW SM

at

7FFF

NPHNO I
"66 16K PROM 7890

ICAND
7006

COMMAND
5606

4000Mt6UT9

20TAS I6 A
646F

10110 $per

offs 7 40 LMMmoyMpH

14"



just as it does to any other memory location, since the SM is in the memory

space of the LM (at addresses 8000 to 80FF). The LMG which is simulated on

a DEC PDP 11/70 interfaces to the LM Shared Memory (SM) through a DEC DR11C

board as block diagrammed in Figure 8 .All transfers are single 8-bit

byte transfers and are done with a complete handshake for each byte using

three of the four control lines shown in Figure 8

The LMG interface board has two output control lines labeled CSRO

and CSR1. These are used as Chip Select (CS) and Write Enable (WE) respec-

tively to the SM hardware. The LMG interface board has two input control

lines labeled AREQ and BREQ. The BREQ line is unused, while the AREQ line

S... .is used for the return handshake for all data transfers. The corresponding

handshakes for read (RD), write (WR), and read-modify-write (RMW) are

diagrammed in Figure 9 . A complete handshake is performed for each byte

of data transferred between the LM and LMG.

The SM address and data buses are shared between the LM and LMG

and thus cannot be accessed by both at the same time. This is resolved by

making the LMG accesses to SM by Direct Memory Access (DMA). This DMA is

implemented by having the LMG CS line act as a halt request to the LM 6800

processor. The Bus Available (BA) signal from the 6800 is then used as the

returning handshake AREQ to the LMG. Details of this timing can be seen inIi.. Figure 10.

RMW is a special implementation which allows each side to read a

F data byte, modify the value, and write the value back without the other side

being able to access it during this time. For LMG accesses this is no prob-

lem using the special RMW handshake shown in Figure 9 since the LM is

halted while LMG is accessing. For the 11M a special procedure is needed.

K 15



LM LMG

AO -A7 ADDRESSBU ADA OUT

DATOBU AND DATA OUJT
DO - 07 ________C

DAIA IN

MEMORY

256 X1 A
R/W CS

CONTROL CSRf
BA LOGIC CSRI

_____ _____AREQ

FIgure 8 SM Block Diagram

16



p7

SSR

in........ valIi d data

a- AREQ

SCSRI
Sout -valid addr. Sdata

-~CSRG

~-AREQ

(b)

- CSRI

-~out valid address

out(vldmdfedo

CSRO
.- in valid data

SAREQ

Figure 9 Handshake between the LMG and LM
for (a) read, (b)write and (c) read- modif y-write.

17



I4 us

CSI

CSRG

GO/WIT

Bus NOTE I'
AVAILABLE foes

AREQ

LM ADR INENS[I.

LMGR/W

LMGCS

LMG ADR ENS

LMG DATA ENS

NOTES: I Olus - t c Zus DEPENDING ON STATUS OF
CURRENT 6600 INSTRUCTION.

2 o -ct - SHOULD BE KEPT SHORT SINCE LM
IS HALTED.

Figure 10 SM Timing Diagram

18



*.• - - .. - ' - . . . .--- - . .- - - --.-.-.. -- .- , • . . S= , - - . .-

Built onto the SM card is a Peripheral Interface Adaptor (PIA) chip with an

output pin (LMRMW) used to temporarily disable the LMG from accessing SM.

When this LMRMW is high the LMG CS line cannot cause a halt request to the

LM 6800 processor. Any LM software needing to do a RMW operation must first

set LMRMW high, do the RMW operation, and set LMRMW low. If the LMG is

attempting to access SM at this moment, it will simply appear as a slow re-

sponse to the handshake.

Whenever the LMG issues a function command (by writing into SM

location FF) or issues a data transfer command (by writing into SM location

FE) an interrupt to the LM is generated. This is implemented by decoding

the SM address bus with LMG CS and LMG WE and inputting these to interrrupt

control pins on the PIA.

Four access strobes are generated and sent to the Front Panel (FP)

card for display on the FP.

Detailed schematics can be found in Appendix B, Section 2-B.

2.2.4 FRONT PANEL/ICA CARD

The LM Front Panel (FP) pictured in Figure 5 is connected to a

FP driver card as block diagramed in Figure 11. This FP card consists of

three Motorola Peripheral Interface Adaptors (PIA's) which each have two

8 bit parallel I/0 ports. This is a total of six ports which are memory

mapped in the LM. Thus the FP displays and switches are software driven by

a subroutine in the LM which is called by the Update task. 1he FP informa-

tion is only valid when the LM is running in a real-time mode of operation.

The bus connections to the ICA are on the same card as the FP

PIA's. These are independent of the FP and are on the same card only for

convenience. Detailed schematics can be found in AppendixB, Section 2-C.

19



r Bus c WRITE DATA

AWRES, NSWITCHES

DATA PA PSBUTTON

CONTROL FUNCTION COMMAND
HEX DISPLAY

READ ADDRESS

8 o ~READ DATA
.. L kU= HEX DISPMAY

a WRITE ADDRESS
SWITCHES

8 00 DISCRETE STATUS

200

00 ED



2.2.5 NIC/TIMER CARD

The Nameplate Interface Controller (NIC) card, residing in the LM,

enables programs running on the LM to communicate with electronic nameplates

via the subsystem information channel bus. This card translates the LM's

bus signals into the signals compatible with the SIC bus. Also installed

in the NIC card is the LM's timer circuit which generates an interrupt to

the LM processor every 10 milliseconds. The design of this card is described

in detail in Section 4.3.1 of this document.

2.3 SOFTWARE DESIGN

Software in the Link Module (LM) consists of a real time executive and

several tasks which implement the LM functions. Assembly language is used

since the FORTRAN available for the 6800 system does not support the multi-

tasking capability required. A top-down, modular approach to the software

V design has been used throughout. The LM software modules are described in

the sections that follow.

2.3.1 LINK MODULE SOFTWARE DECOMPOSITION

The Link Module (LM) software is a multitasking system, with task

scheduling controlled by a round robin executive. Each task is a self

contained unit and performs a well defined function. However, one task may

require the services of another task in order to complete its function.

Intertask control interaction is achieved through calls to the executive.

Intertask data sharing is implemented through global common variables. The

tasks include an update timer, three handlers, a comand interpreter, and

the non-resident task. These are diagramed in Figure 12 and listed in

Table 2

21

-2- - - - * . ~. ~ --- ~.-. . . . . . . . . .



ROUM RON

EXEUTIVE

WI~h MAT

Figue 12 Exeutiv Ineracion

22u

-r .ICA

COMMAND .. 
NP STATU



17

Table 2

LINK MODULE TASKS

Task Name Task Number Starting Address

UPDATE (Update time) 0 5020

ICAHND (ICA handler) 1 7020

SICHND (SIC handler) 2 7820

SMHND (SM handler) 3 6820

CMDITR (Command Interpreter) 4 6020

• NRTSK (Non-resident task) 5 040D (usually)

".2

,I



The Update task works in conjunction with a timer interrupt ser-

vice routine. The timer interrupt routine increments a counter with each

clock tick. When the Update task runs it reads this tick counter, updates

time of day, and decrements each task's delay counters accordingly. When a

taskls delay count reaches zero, the corresponding task is activated.

The Shared Memory (SM), Interface Configuration Adaptor (ICA),

and Nameplate (NP) handlers perform communication and data transfers with

their respective devices. Each handler also updates its device's status in

Shared Memory. The handlers run as tasks, and are activated by other tasks

through executive requests.

The Command Interpreter task works in conjunction with an LM

function interrupt routine which runs whenever the Link Manager (LMG) sends

a command to the LM via Shared Memory. The interrupt routine checks the

command for validity and flags the Command Interpreter task to execute the

command.

A non-resident task may be loaded and executed in the LM. This

program may be either uploaded from the Nameplate or downloaded from the

LMG. It may be a data I/O, calibration, or subsystem diagnostic. However,

only one non-resident task may be loaded in the LM at any one time. This

task may be started or stopped under LMG control.

Tasks are scheduled for execution under a round robin scheduling

algorithm. Details of the executive and each task are given in the sections

that follow.

2.3.2 REAL-TIME EXECUTIVE

A real-time executive program is used to schedule the execution

of tasks in the Motorola M6800 microprocessor based system. This section

24



describes the services available in the executive and defines how to use

them. A description of the functional aspects of the program is also given

here.

The executive implements a round robin scheme for task scheduling.

The executive allows for up to 12 tasks to be scheduled, including non-

resident tasks. In this implementation it permits only 1 non-resident task

and includes only 5 predefined resident tasks. The 5 resident tasks are:

the update task, the Shared Memory (SM) handler, the Subsystem Information

Channel (SIC) handler, the Interface Configuration Adaptor (ICA) handler,

and the command interpreter. The non-resident task can be any one of

several data I/0 and diagnostic tasks. This constraint can easily be modi-

fied, if necessary, to include more non-resident tasks.

The Executive program allows each installed task to be in one of

four possible states: dormant, delayed, ready, or running. The task states

are diagrammed in Figure 13 . A running task is the one currently using

the CPU. A task in the ready state is waiting for its turn to be processed.

A delayed task becomes ready when its delay time has elapsed. A dormant

task will not run. A delayed or dormant task may be brought to the ready

state through activation.

Ready tasks are executed in a cyclic manner, the next ready task

in the cycle being given control of the CPU. Once a task has control of

the CPU, it is up to it to voluntarily release the CPU. Therefore, each

task must not be executed continuously if it requires excessive CPU time,

otherwise the system may not maintain a real-time operation.

A running task can call upon the executive to modify the execu-

tion status of another task - (activate, abort, install or remove) in which

25

I,
• o1



OR

DELAY TIME UP

Figure 13 Transition of States

26



case the executive temporarily regains control of the CPU, performs the

function, and returns CPU control to the calling task. A running task can

release CPU control by calling upon the executive to perform any of the

following functions - relinquish, exit, or delay, in which case the execu-

tive performs the function on the calling task and transfers CPU control to

the next ready task in the cycle. To be able to perform all the above men-

tioned functions, the executive maintains tables containing the start

address, restart address, initial stack pointer, current stack pointer and

initial and current state of task for each installed task.

In addition to task control services, the executive also provides

services to allocate the three device handlers to tasks in need of them.

This ensures that not more than one task is using a particular handler at

any given time. The services are called Shared Memory Request (SMRQ), SIC

Request (SICRQ), and ICA Request (ICARQ).

The executive also furnishes math functions which can be used by

the running task. The functions provided are 16 bit divide, 16 bit multiply,

binary to BCD, BCD to binary, and three special functions pertinent to the

processing required by the subsystems used in this demonstration. The

running task can call upon the executive to perform these functions. Upon

completion, the exeLutive returns to the calling task with the result.

Thus a total of 11 executive services are provided. The calling

sequence and a brief description of each service is described below.

2.3.2.1 Executive Services

There are 11 executive services. Each service can be requested

through the EXECRQ macro. This macro simplifies the calling sequence of

all the services. The macro is listed and explained in Appendix C, Section 2-B.

27



The explanation of the executive services is given below.

1. Activate: This service is used by the running task to bring any

* 'other task into the ready state from either the dormant or delayed

states. It has no effect on a task already in the ready state.

Calling sequence: EXECRQ ACTVAT, TASKNO

where TASKNO is the task # of task to be activated

Register usage: A - #0

B - #TASKNO

X - unused

2. Relinquish: This service transfers the running task from the running

state to the ready state. This is one of the ways a task can release

CPU control, and ensures the task's regaining CPU control after one

cycle of the round-robin scheduler, whereupon it can start wherever it

last left off.

Calling sequence: EXECRQ RELQSH

Register usage: A - #1

B - unused

X - unused

3. Exit: This service transfers the running task from the running state

to the dormant state. This also is a way for a task to release CPU

control, but the task runs again only if activated by another task.

Execution of a task that has exited starts from the beginning.

Calling sequence: EXECRQ EXIT

28

. ..*° . , . . . . . ..". . . . ..



Register usage: A - # 2

B - unused

X - unused

4. Delay: This service transfers a running task to the delayed state.

This is another way for a task to release CPU control. The task will

automatically become ready only when the delay time expires, unless

prematurely activated by another task. When the task runs again it

will start from wherever it last left off. The delay time is determined

by the UPDATE task.

Calling sequence: EXECRQ DELAY, TIME

where TIME is the delay time in seconds if the MSB of the 8 bits = i

and is the delay time in ids of milliseconds if the MSB of 8 bits = 0.

Register usage: A - #3

B - # TIME

X - unused

5. Abort: The running task can use this service to transfer any other

task from the ready or delayed states to the dormant state. The abort-

ed task will run again when activated, and execution will start from

the beginning.

Calling sequence: EXECRQ ABORT, TASKNO

where TASKNO is the task # of the task to be aborted

Register usage: A - #4

B - #TASKNO

X - unused

29



6. Install: The running task can use this service to introduce a

new task into the execution scheduling cycle. At present only one task

can be installed and will be designated as task #5. Thus if there is

already a task designated as #5 it will have to be 'removed' before

'installing' a new one. The service returns a status indicating the

absence or presence of a previously installed task.

To install a new task it is necessary to transfer to

the executive the starting address, initial stack pointer and initial

state of the task.

Calling sequence: set up table as follows for task to be in-
stalled.

TABADR - Starting address 2

Initial stack pointer 2 bytes

Initial state 1

Return status 1

• EXECRQ INSTAL, TASKNO, TABADR

where TASKNO is # of the task to be installed (5) and TABADR is the

address of the start of the table set up.

Register usage: A - #5

B - #TASKNO

C - #TABADR

7. Remove: This service is used by the running task to remove a

task from the round-robin cycle. The task will be removed only if it

is in the delayed or dormant state. If it is in the ready state, the

30



task will not be removed and a status will be returned indicating that

the particular task was active.

Calling sequence: EXECRQ REMOVE, TASKNO, STSADR

where TASKNO is the # of the task to be removed and STSADR is the ad-

dress where the status will be returned.

Register usage: A -#6

B- #TASKNO

X- #STSADR

8. ICA Request: The running task can use this service to assume control

of the ICA handler. If the services of the ICA handler have already

been granted to another task the service call returns with a status

saying so. If the handler is successfully allocated to the running

task, the address of the table of parameters to be sent to the handler

is passed to the handler. Then, status saying 'handler allocated' is

returned to the calling task.

Calling sequence: EXECRQ ICARQ, ICAFUN, GROUP, CHANEL, OPTION,

4CNSORC, NUMBYT, BUFADR, UFTADR

where UFTADR is the address where the parameter table is to be set up.

A detailed description of other parameters will be found in the ICA

handler section.

Register usage: A - #7

B - unused

X - #UFT addr.

31

q°

..
°

.



9. SIC Request: The running task can use this service to assume control

of the SIC handler. This service functions exactly like the ICA re-

quest service.

Calling sequence: EXECRQ SICRQ, NPID, SICFUN, BUFADR, BUFSIZ, UFTADR

. where UFTADR is the starting address of the table of parameters. For

a description of other parameters please refer to the SIC handler

section.

Register usage: A - #8

B - unused

X - #UFTADR

10. SM Request: The running task can use this service to assume control

of the shared memory handler. This service functions exactly like the

ICA request service.

Calling sequence: EXECRQ SMRQ, SMFUN, BUFADR, BUFSIZ, UFTADR

where UFTADR is the starting address of the table of parameters. For

a description of other parameters please refer to the SM handler section.

L~*
Register usage: A - #9

B - unused

X - #UFTADR

11. Math: The running task can use this service to perform any one

of sevan mathematical functions. The task must provide the arguments

in the calling sequence. The executive returns to the calling task

32

. . - . -



. ... .. .. . . . . . . - . , , _ . .

with the result of the operation in the address specified by the call-

ing task.

General calling sequence:

EXECRQ MATH, function, ADROPI, ADROP2, ADROP3, ADROP4, RESULT

where function is any one of:

DMULT - Double multiply (8 bit operands, 16 bit result)

DDIV - Double divide (16 bit operands, 16 bit result)

BINBCD - Binary to BCD (16 bit binary to 5 BCD digits)

BCDBIN - BCD to binary ( 4 BCD digits to 16 bit binary)

CALCA - Calculation of synchro constant 'A'. Arguments required
are three synchro voltages each in 8 bit 2's complement
form.

THETA - Calculation of synchro angle '0'. Arguments required are
three synchro voltages each in 8 bit 2's complement form
and value of 'A'.

VOUTS - Calculation of three synchro output voltages in 8 bit 2's
complement form. Arguments required are 'e' and 'A'.

ADROPn is address of operand n

and RESULT is address for the result.

Calling sequences according to functions:

EXECRQ MATH,DMULTaddr. of multiplicand,addr. of multiplier, ,,RESULT

EXECRQ ATH,DDIV,addr. of dividend,addr. of divisor,,,RESULT

EXECRQ MATH,BCDBIN,addr. of BCD,,,,RESULT

EXECRQ MATH,BINBCD,addr. of binary,,, ,RESULT

EXECRQ MATH,CALCA,addr. of Vl,addr. of V2,addr. of V3,,RESULT

EXECRQ ATH,THETA,addr. of Vl,addr. of V2,addr. of V3,addr. of A,RESULT

EXECRQ MATH,VOUTS,addr. of e,addr. of A,,,RESULT

33



2.3.2.2 Operation

* . To be able to function properly, the executive needs to keep track

of three parameters for each task scheduled for execution. It must know the

state (active/inactive) of the task, the address at which the task will re-

sume execution, and the value of the stack pointer when the task resumes

execution. All these parameters may vary during the course of execution of

a task, but initially - before the task starts its first execution - they

will always have a fixed value chosen during system generation. So the

initial values of these parameters are stored in ROM and during its initial-

ization the executive copies these parameters into RAM. From thereon, the

executive examines and/or modifies these parameters in RAM during context

switching.

The executive also needs to know the number of tasks installed.

This number is stored in a variable called NTASKS, which varies due to the

'installation' or 'removal' of the nonresident task. The variable is ini-

tialized by the executive during its initialization. Since in this appli-

cation there are 5 resident tasks and no initially installed nonresident

task, this variable is first set to 5.

Thus we see that during its initialization the execuive copies

parameters from ROM into RAM and sets-up the number of tasks. It also

allows the 5 resident tasks to go through their own initialization. All

this is done on power-up.

Once this is over, the scheduler part of the executive takes over.

It determines which task should get control of the CPU by examining the

task status of each task. The first task it comes across which is in the

active state receives CPU control. Before transferring control, the

34

I ,--, - .4 -. ,. . . . . . . . . . ..' ' #:-:- '. . .. . . : , ., .. " .. .:



.7.

scheduler gets the value of the stack pointer and the address where the task

will begin execution (both from RAM). It then sets up the stack pointer and

jumps to the start address obtained from RAM.

Whenever a task wants to avail itself of the executive's services, it will

make a call to the executive - through the EXECRQ macro - at which point the

service dispatcher part of the executive will take over. The service dis-

patcher will examine the contents of register A and will jump to the appro-

priate service. The particular service will be performed and then one of

two things will take place. If the service is either relinquish, delay or

exit, control of the CPU will go to the scheduler so that the next active

task may be scheduled for execution. On the other hand if the call is for

a service other than the three mentioned, the executive will return control

to the calling task.

The architecture of the executive is portrayed in Figure 14. A

list of routines used by the executive and their respective functions, is

presented in Table 3.

2.3.2.3 Parameters and Variables

The executive requires certain parameters and maintains various

variables (some of which are global) to enable its functioning. These vari-

ables give a fair indication of the state of the executive and the resident

and nonresident tasks, and their examination is a useful debugging aid. A

brief explanation of the most significant parameters and variables will now

be presented.

Parameters

The task parameters that are copied from ROM into RAM during the exe-

35

,o



II

IdI
Lu

LL ti

E-4

c-t

'-4

tc

PL4

36



Table 3

PROGRAMS AND THEIR FUNCTIONS

PROGRAM NAME DESCRIPTION

EXEC Main program

ACTVT Service routine for ACTIVATE function

ABORT Service routine for ABORT function

DELAY Service routine for DELAY function

EXIT Service routine for EXIT function

RELQSH Service routine for RELINQUISH function

INSTAL Service routine for INSTALL function

REMOVE Service routine for REMOVE function

ICARQ Service routine for ICA handler allocation

NPRQ Service routine for SIC handler allocation

SMRQ Service routine for SM handler allocation

MATH Service routine for MATH operations

BLDADR Adds the contents of Reg. A to Reg. X

CLRACT,CLRACI Clears the active bit of task status word

GETSTS Gets the status word for a task

GETADR Performs the operation: Reg(X)=2. Reg(A)+Reg(X)

GSTADR Transfers task start address to restart address

ADJSTK Adjusts task stack pointer to its initial position

COPY2B Copies two bytes of data

INITIA Routine which initializes the EXEC and each task

XFER Subroutine that transfers a block of N bytes from loc. 1
to loc. 2

RESTOR Copies start addr. + initial SP. for nonresident task

DMULT Does a double multiply

DDIV Does a double divide

BCDBIN Converts 4 BCD's to 2 byte binary

BINBCD Converts 2 byte binary to 5 BCD's

CALCA Calculates 'A' from synchro voltages

THETA Calculates e from synchro voltages and 'A'
VOUTS Calculates synchro output voltages from e and 'A'
SERCH Binary search routine

COSINE Determines Cos e

37

*i.



cutives initialization are the following:

STAADR (Task starting address array) - Two bytes for each resident task

giving the address where the task first starts execution after initialization.

STKROM (Task stack pointer array) - Two bytes for each resident task

containing the initial value of the stack pointer for the task.

INIZST (Task initial status array) - One byte for each resident task

specifying the initial state of the task at system start-up.

Global Variables

The following variables are used by the executive:

TSKSTS (Task status array) - Initially copied from INIZST. One byte

for each task indicating if the task is active ($80) or not ($00). Also

accessed by the update task. Upon expiration of the delay time of a delayed

task, the update task changes the task's status from inactive to active.

The executive examines this array for scheduling of tasks.

DLYTIM (Task delay times) - One byte for each task indicating the de-

lay time of the corresponding task. The most significant bit shows the

delay time is in seconds (1) or 10's of milliseconds (0). The other 7 bits

are a delay unit count. The executive initializes the delay time as re-

quested by the calling task and the update task modifies it as time ticks.

MATHVAR (P,Q,R,TABLE) - P, Q and R are 2 bytes each and TABLE is 6

bytes. The math routines in the executive titilize these variables during

computation. These are initialized - with the operands and address of the

result - by the macro whenever a task requests the math service of the

executive.

38

.•..



UFTICA (UFT* pointer for ICA handler) - Two bytes containing the 16 bit

* address of the start of the UFT table holding parameters to be sent to the

ICA handler. This is initialized by the ICA handler during its initializa-

tion.

UFTSM (UFT pointer for SM handler) - Two bytes containing the 16 bit

address of the start of the UFT table holding the parameters to be sent to

the SM handler. This is initialized by the SM handler during its initial-

ization.

UFTNP (UFT pointer for SIC handler) - Two bytes containing the 16 bit

address of the start of the UFT table holding the parameters to be sent to

the SIC handler. This is initialized by the SIC handler during the

initialization.

INSFLG ('Installed' flag) - One byte indicating whether a nonresident

task is installed ($01) or not ($qq). It is also examined by the command

interpreter.

A list of global variables appears in Table 4. The interactions of

the executive with other tasks is portrayed in Figure 15.

Other Variables

RSTADR (Task restart address array) - This is initially copied from

STAADR. It has two words for each task containing the address at which the

corresponding task next resua,±s execution.

*

User File Table

39

• S ' , + -. . -°+ . + - , -. " . " °

I a~ a , . a = a' J m - ,. . - , , ' , ; - : + . - . . . . . - . ." '.



-%) 0.
E0-4 0 

.0 U .. j U .

01..4 A.-4. 0 -4
w V4 0 b :

u -4 Q -4J 0 1
%'-' 6J 0 00 0

-4 0)$4. tv r- (A %-, to00a 0 -4 to to
V.1. 441. 0 0)

C. ~ 0- *4
14 4 1w1(04.5 -40 0 0 01..

(0 41

0d 00 00 60 C:

'-4 00 0 0 (0
-4 0 ca L6 4 co *l AiF 0AA

0- 1.t0 w -H u
V) .41 0rf CA

U) 41 4-4( * 4 H~ IVe 1co cz 0 4 -r4- AJ 0 0 0 -4 ..
4150 ce4- 44 4-4 0 .0 tO Y r'-4 Q0 w4)~ .4 0

0 41 -4 4.D-I 41 -4 041 fu 0

A0-4 % 0 0 0 ".. 00
co4) t 0 -4 to_ _I_ _to

EC-0 .-4 1 0 4V ca

44 .044

04 C: 4
>-4- '4. V4 .04 -. 4

E-4 E41

Mz C14C-

40

Ol



k.

Figue 1 Inerati~nof he xectiv

41PL
SMWOL



STKRAM (Task stack pointer array) - This is initially copied from STKRO.M.

It has two words for each task containing the current value of the stack

pointer for the task.

RSTTMP - Two words for the nonresident task containing the address at

which it will first start execution. This is analogous to STAADR for resi-

* dent tasks.

STKTMP - Two words for the nonresident task containing the initial value

of its stack pointer. This is analogous to STKROM for resident tasks.

NTASKS - One byte indicating the number of tasks in the round-robin,

including nonresident tasks if any. This is initialized to 5 and changed to

6 if a nonresident task is installed.

There are other variables used by the executive but since their descrip-

tion does not in any way shed light upon the functioning of the executive,

their explanation has been omitted.

2.3.3 UPDATE TASK

The real-time executive used in this system requires a task to

keep track of time. The executive also needs the facility of updating the

status of delayed tasks. The update task ostensibly fulfills these require-

ments, with the help of some hardware and an interrupt routine.

The update task maintains time in Julian day, hours, minutes, and

seconds. It decrements the delay times in the delay-time array of the

executive. It also maintains 6 independent timers for the handlers.

42

. - - . *



2.3.3.1 Operation

In order for it to count time, the update task must have access

to a hardware clock. Each clock pulse causes an interrupt which is serviced

by an interrupt routine called CLOCK. The interrupt routine accumulates the

number of pulses received from a 100 Hz clock.

The update task is scheduled for execution in the same way as

other tasks. Each time the update task runs, it checks to see if any pulses

have been accumulated by the interrupt routine. It decrements the delay

times of all delayed tasks by the amount of time the number of pulses add

up to. It checks the resulting delay time, and if the time has expired it

changes the state of the corresponding task from 'delayed' to 'ready'.

Figure 16 shows the structure of the update task.

Next, the update task decrements the 6 independent timers used

by the handlers. These timers are in units of 10 milliseconds and thus

allow a maximum time count of 2.55 seconds.

Lastly, the update task renews the system time. The time - in

*i days, hours, minutes, and seconds - is maintained in BCD data format.

The task then relinquishes control of the CPU and awaits for its

turn in the next scheduling cycle. In the next cycle it goes through the

above mentioned steps in the same fashion.

Since the update task runs during every scheduling cycle, it is

used to call upon a subroutine which refreshes the front-panel of the

system.

A detailed description of the update task is presented in Appendix

C, Section 2-C.

43



STA~r COMTS

INITIALIXE. Invok&A 6~y
VA$RIAWLeS

A N) e.xet~ve dlarif%1
HA"EWARE

ACCUDATEbFRONTS

U, M U EyS 61p

TAKSAES

b £CftMENT

-rimepts

Figure 16 Update Task Structure

44



...'. ~

2.3.3.2 Interactions with other Tasks

The update task has interations with the executive, the handlers,

the interrupt service routine, the command interpreter, and the nonresident

tasks. These interactions are shown in Figure 17 along with the names of

the variables through which they take place. For a detailed description of

these variables, refer to Appendix C, Section 2-C.

2.3.4 ICA HANDLER

The ICA handler is one of the resident tasks in the link module

and is designated as task #1. It is a software program which provides an

interface between a task wanting to use tbc CA and the ICA itself. It

translates general commands from a task, into speciJc commands recognizable

by the ICA. It also provides a means of transfer of data and status between

a task and the ICA, taking care of all the details involved with this trans-

fer. For a task, this implies a simplified means of interacting with the

*: ICA.

The handler communicates with the ICA through the ICA buffers. A

map of these buffers is given in Figure 18. As shown in this figure, some

of these buffers are used to configure the ICA, and others are used for

transferring data.

2.3.4.1 Handler Functions

The ICA handler has 3 basic functions:

1. Configure

2. Control

3. Data transfer

45

K ..



RounwE

Sm
RESomm MNbl-Elt,

74ANt-LK

TAk, 6 Kla
WAT C-IC

TIM Ki
TIM6 TI M OR 2.

COMMAND ICA
TIM ERS J)"K

INTER- UPDATE -rIf4ff^6 DIZNDLEK
PACTER TIME

TIM TI MERS

TS STS -nm 4

IS1 c

ExrmcuvVE WANDLE

Figure 17 Update Task InteractiOnS

46



ZATA SUFFERS

ArDRLSS
(14cx)q ____ /out_______I

Ufl.LLS eA r

q846 RL) COMPOMAT(ON BUFFERS
q64 OOU

qgue- o*Lq ortj

Figure 18 Mmory Map ofICA Buffer

47



- ..-..-- r---.- -

1

A brief description of each of these is given below.

Configure: This function has two options read and write. If the

option is 'Read', the handler transfers the existing configuration to a

* specified buffer address. If the option is 'Write', the handler transfers

the desired configuration from a specified address to the ICA buffers.

The ICA has several configurations, each of which defines a particular

combination of states of its hardware. Any configuration consists of 7

bytes of data. The handler uses this data to configure the ICA. A list of

configurations is given in Table 5.

* Control: This function has 3 options - online, offline and reset.

'Online' enables outputs from the ICA, 'Offline' disabled outputs from the

ICA. 'Reset' disables both inputs and outputs.

Data Transfer: This function has 2 options - input and output. The

data must be transferred to or from the handler, in a buffer. The handler

assumes that the data being transferred is compatible with the configuration

of the ICA. However, if the option is input and the ICA is configured for

output or vice-versa, the handler detects the error.

2.3.4.2 Calling Sequences

The services of the handler must be requested through the execu-

tive. The request to the executive is made through the following macro call:

EXECRQ ICARQ, ICAFUN, GROUP, CHANEL, OPTION, CNSORC, NUMBYT, BUFADR, UFTADR

EXECRQ is a macro defined to form a table of all these parameters. The table

will start at the UFT address specified and will be set up as shown in Fig-

ure 19.

48

..,,.'...............................-



Table 5

ICA CONFIGURATIONS

TYPE TOP. TOP. HI LO THRSH WORD CLOCK
_______T__PE _ WORD 0 WORD 1 LEVEL LEVEL COUNT RATE

AINAC S.E. C3 30 4X 80 60 02 00

AINAC DIFF. C7 3y 4,0 80 6,0 02 00r

AINDC S.E. 83 3,0 4,0 8$ 60 $2 J0

AINDC DIFF. 87 30r 40 80 60 2 do

AOUTAC S.E. CB 52 42' 8$ 60" $2 00

AOUTAC DIFF. DF 52 4 80 60 02 00

AOUTDC S.E. 8B 52 40 80 6 2 0

AOUTDC DIFF. 9F 52 40' 81 66 02 00

SYNIN CB 10 46 8g 6e' 02 00

SYNOUT CB 20 40 84 60 02 00

SINREF OB 42 40 8g 680' 2 0

SINFLG OB 46 46 80 6C( ,62 00

SOUT OB 82 4,0 80 60" ,0 0

DINREF S.E. 03 30 40 80 60 J62

DINREF DIFF. 07 30 4,0 80 60 12 00

DINMOM FOL. 23 32 40 80 60" 62 00

DINMOM LAT. 23 33 40 8, 60 02 00

DOUT OB 52 40 80 6,0 02 op

49

-C. ' % . . , .- -. . .- • , ,



UFTADR - 0

RETURN -STATUS

SOURCE (u~iQ/NP)

FuNCTION

GROUP

CHIANNEL

OPTION

NUMBER OF BYTES

BUFFER

ADDRESS

LFigure 19 Parameter Table Set-up by Macro

K 50



If the executive grants the request for the handler, then it saves

the pointer to this table - the UFT address. When the ICA handler runs the

next time, it retrieves the UFT address and parameters, and performs the

function as specified by the parameters.

An explanation of the parameters in the calling sequence is given

below.

ICAFUN - This parameter specifies the function. It could be

CONFIG, CONTRL, or DATATR.

GROUP - This is used only when ICAFUN is DATATR, and when the

data being transferred is analog. It specifies the chan-

nel and could be 1, 2, 3, 4, or 5 (for all channels).

OPTION - Every function has certain options. When ICAFUN is

CONFIG, possible options are READ and WRITE and are used,

respectively, to read or write the configuration. When

ICAFUN is CONTRL the possible options are RESET, ONLINE,

and OFFLINE. RESET resets the ICA, ONLINE enables out-

puts, and OFFLINE disables them.

When ICAFUN is DATATR the possible options are INPUT

and OUTPUT and are used, respectively, to input and out-

put data.

CNSORC - This parameter defines the source of the configuration.

If the configuration is from the LMG this parameter is

'0' and if the configuration is from the nameplate this

parameter is '1'.

51



NUBYT - This parameter holds the number of bytes either to be

transferred or that have been transferred. It is not

necessary to supply the number of bytes to be transferred

since in all cases this is known apriori. However, this

parameter does hold the number of bytes successfully

transferred, after the transfer takes place. If this

parameter is zero it indicates that the transfer was

unsuccessful.

BUFADR- This parameter holds the address of the 7 bytes of con-

figuration that will be used if ICAFUN is CONFIG and the

option is WRITE. For the same function if the option is

READ, this parameter holds the address of the buffer into

which the configuration will be read.
-.

If ICAFUN is DATATR then BUFADR holds the address

of the buffer to or from where the data will be trans-

ferred, depending on the OPTION.

If ICAFUN is CONTRL, this parameter is not used.

In the table of parameters as shown in Figure 19, the first

entry is 'Return status'. This holds the status of the operation as return-

ed by the handler. The various status codes and their meaning is given in

Table 6.

2.3.4.3 ICA Handler Design

The ICA handler has an initialization section which is invoked by

the executive during the executive's initialization. During initialization

the handler sets-up the Peripheral Interface Adapters (PIA) and the syn-

52



Table 6

ICA HANDLER STATUS CODES

Status Description

.4. 0 Success

I Handler allocated.

2 Handler not allocated.

4 Function in progress.

-1 Invalid function.

-2 Group not configured.

-3 Parity error during serial input.

-4 Invalid configuration.

-5 No data received during serial input.

-6 Parity error during serial output.

-7 Data not transmit during serial output.

-8 Invalid I/O request: group set for synchro output.

-9 Invalid I/0 request: group set for synchro input.

-i0 Invalid I/O request: group set for analog output.

-11 Invalid I/O request: group set for analog input.

-12 Invalid 1/0 request: group set for discrete output.

-13 Invalid I/O request: group set for discrete input.

-14 Invalid I/O request: group set for serial output.

-15 Invalid I/O request: group set for serial input.

53



chronous serial data adapters (SSDA) which form part of the ICA buffers.

The handler initializes all its variables and sets the ICA in the reset

state. It also initializes the UFT pointer, UFTICA, to a parameter table

which will require the handler to perform the update function. The update

function, though not a 'full-fledged' function of the handler, updates the

ICA status in shared memory.

Once the initialization is over, the handler runs periodically

every one second. Whenever another task requests the handler's services

this period is disrupted since the handler immediately attends to the re-

" quest. Each time the handler runs, it first gets the parameter table

pointer from UFTICA. From the parameter table it gets the function and

performs the required steps corresponding to that function.

After performing any function, the handler sets UFTICA to point

to the parameter table holding the update function. Thus, until the handler

is requested by another task it periodically performs the update function.

This structure of the handler is depicted in Figure 20.

The three major functions of the handler are implemented as sub-

routines. Each of these subroutines, in turn, call upon a host of other

subroutines at the secondary level. The subroutines in the handler and

their hierarchy are shown in Figure 21. For a detailed description of

these subroutines please refer to Appendix C, Section 2-D.

The handler has interactions with the executive through UFTICA,

with the update task through the independent timers TIMER5 and TIMER6, and

with shared memory through ICASTS. These interactions are shown in Figures

15 , 17, and the shared memory map in Figure 28, respectively. For

further details about these global variables please refer to Appendix C,

Section 2-D.

54



STARTCOMMENTS

ImgTIALIZArjot. iok .
exeev dwin5

CRETURN)

STA RT

42ET FrOm le k'CU-0ve

UFT POI'.TfSR[bt omr

E7FUNCP1O ~

jUFT1CA=UPIvATr t~r spda'e.

lreq~uesua4hd
rZELAY isf:e oLht

Figure 20 ICA Handler Structure

55



5Eopt~~t4IN OURT14 GE4FRAL

MAIN LEVEL LfVEL LEVELPUOS

ECAH 1 XFER

CONFIG VALCWK R ETSTS

P1 ASET SIMSET BUF.SET INCR

SYNSET

TY Pc14K

CONTRL

flATATR SE R1 S4I5M.SIN

RXDATA

STA RT

SERSTP

ANALIN

-SYNCIN

SEROUT SOSIM

XMIT INST

SF-RSTP

Dscour

___ ___ _ SYNOVT _ _ _ __ _ _ _ _

*Figure 21 ICA Handler Subroutines and their Hierarchy

56



2.3.5 SIC HANDLER

The SIC handler provides tasks running in the link module with a

simple to use interface to the subsystem information channel (SIC). The

handler allows a calling task to make a single call to request a relatively

complex function be performed. The SIC handler will translate a request

into several commands which are sent to an electronic nameplate to perform

the function requested. All the detailed timing and control required for

communication with electronic nameplates are performed by the handler.

2.3.5.1 SIC Handler Functions

This section describes the functions of the SIC handler. Table

7 lists all SIC handler functions implemented.

2.3.5.1.1 SIC Status in Shared Memory

The SIC handler periodically updates a status byte in shared

memory. This byte reflects the status of the subsystem information channel

as shown in Figure 22. The handler updates this byte every 0.5 seconds.

2.3.5.1.2 SIC Initialization

Any time a nameplate is added to or removed from the SIC, a re-

quest for initialization must be made to the handler. This is accomplished

through the SIC handler function SICINT. This function request causes the

handler to reset the nameplate, to run the nameplate's diagnostic program,

and to build the SIC status table shown in Figure 23. This initialization

procedure is the only way bits 7 and 6 (SIC hardware failure and SIC con-

figuration changed) of the SIC status byte in shared memory may be reset

after a SIC status condition has caused them to be set.

57

t .4 m 
- "

" : , ' ' , : ' " b : ' ' ' • i . : _ ' " . . - " - . , . " " " "



b7 b6 b5 b4 b3 b2 bl bO

HWE CFC NPP fINT RCF 0 RS

HWE: SIC hardware failure (master NP or NIC), used
as No-Go/Go bit.

CFC: SIC configuration changed since initialization
(SIC needs to be reinitialized).

NPP: At least one NP is present.

-2 INT: SIC has been initialized.

RCF: SIC maintenance record area on the master NP
is full.

RST: SIC in reset state.

Figure 22 SIC Status Byte in Shared Memory

58

e.'.................



* - -. -- c-r-J;: . ,q ,
" - -, ' "

=- _ r .7 , r- -. .
-

.. 
. .. ; - ... ,. - --. 

-- . . , -

NIC Status

Number of NPs Present

1st NP's ID

1st NP's Diagnostic

Result *

2nd NP's ID

2nd NP's Diagnostic

Result

Last NP's ID

Last NP's Diagnostic

Result

See Section 4 for format of these
diagnostic result bytes.

Figure 23 SIC Status Table

59

....- 
..



2.3.5.1.3 Load Functions

The load functions (LDDIR,LDCFN,LDCNV, and DMPWRT) cause different

areas of a nameplate's memory to be read and stored in the area specified

by the calling task. The type of data each function causes to be loaded is

indicated in Table 7.

2.3.5.1.4 Maintenance Record Functions

A task running in the LM may write maintenance records regarding

the subsystem's performance into the read/write area of a nameplate's mem-

ory. The SIC handler function WRTREC is used to perform this function. A

maximum of 14 bytes (one record) may be written at a time. The format of a

maintenance record is described in Section 4.1.3. Records are written

sequentially in the nameplate's read/write memory.

The RDREC command Is used to read a previously written record. A

record pointer is used to specify the first record to be read. The function

RDREC causes the specified number of records to be read starting with the

record pointed to by the record pointer. The function RECPOS is used to

move the record pointer to a desired record. There are four sub-functions

(POSFUN) of the function RECPOS used for this pointer as indicated in Table

'S 7.

The records may also be read by the load function, DMPWRT, which

reads all 16 records (256 bytes total) from the nameplate at one time.

The function ERAWRT simulates the erasure of the nameplate's read/write

memory. The record pointer is set to point to the first record as a result

of this erase function.

60

....



Table 7

SIC HANDLER FUNCTIONS

CODE
FUNCTION (SICFUN) DESCRIPTION

UPDTSM 5 Update SIC status in shared memory.

SICINT 1 Initialize SIC.

LDDIR 2 Load nameplate's directory.

LDCFN 3 Load ICA configuration table from the
nameplate.

LDCNV 4 Load the subsystem's data I/O conver-
sion program from the nameplate.

5 Reserved.

6 Reserved.

WRTREC 7 Write a record into the nameplate.

DMPWRT 8 Load all of the nameplate's read/writ
memory (record area).

ERAWRT 9 Simulate erasure of the nameplate's
read/write memory.

RECPOS 10 Positions the record pointer to a
particular record. The type of posi-
tioning (POSFUN) which may be re-
quested are:

e EDD: (POSFUN=l) end of data;
positions record pointer to
the first record following
the end of written records
(i.e. the first empty record)
Note: this is where the

record pointer is set after
a record has just been
written. The record pointer
value is ignored in writing
records. Records are always
written sequentially.

61

.Z,



Table 7 (Continued)

SIC HANDLER FUNCTIONS

- FUNCTION CODE DESCRIPTION
i_____ (SICFUN)

, BOD: (POSFUN=2) beginning of data;
positions the record pointer
to the first record in the
read/write memory.

* BACKREC: (POSFUN-3) backup the re-
cord pointer the specified
number of records.

* FUDREL: (POSFUN-4) advance the re-
cord pointer the specified
number of records.

RDREC 11 Read the specified number of records
(NUMREC) from the nameplate starting
at the record denoted by the record
pointer.

62

.- 
7



2.3.5.2 SIC Handler Calling Sequence

A call to this handler by a task requesting a function is made by

a request to the executive. The executive builds a user file table (UFT),

consisting of the parameters specified by the calling task, and passes it

, to the SIC handler. Then the executive sets the SIC handler to a ready

state, eliminating any remaining delay the handler had, so that the handler

will run when its turn in the round robin schedule is reached. Note, how-

ever, that control is returned immediately to the calling task after the

* SIC handler is set ready. Thus the calling task must relinquish control to

allow the handler to run.

The format of a request to the executive for this SIC handler is:

EXECRQ SICRQ, NPID, SICFUN, BUFADR, BUFSIZ, UFTADR

where

EXECRQ: indicates a request of the executive is required

SICRQ : indicates the SIC handler is requested

NPID : specifies which nameplate is desired to perform function

(must always equal zero in this implementation)

SICFUN: specifies what function is requested of the SIC handler

BUFADR: specifies the starting memory address of the memory area
(or POSFUN) in the link module that data is to be loaded into (load

functions) or copied out of (write record function). On
a record positioning function this parameter becomes the
type of record positioning required (POSFUN).

BUFSIZ: specifies the maximum size of the memory area denoted by
(or NUMREC) #BUFADR. On a record positioning function this parameter

becomes the number of records to be processed. On the
completion of any function this parameter is changed to
represent the number of bytes actually transferred.

UFTADR: specifies the memory area where the UFT is to be stored.
The area size must be at least 8 bytes.

63

. .. .? , .".:. ,- .,- -. . .. . .. - . .-... .



7-7 .% 7 -7 - 7 7

Figure 24 shows the UFT built as a result of this request.

Any time after a request is made to this handler, the calling task

may examine the first word of the UFT to obtain the present status of the

request. The request status codes are given in Table 8.

2.3.5.3 SIC Handler Design

Figure 25 shows the flowchart for the main routine of the SIC

handler task SICHND. The SIC hardware and SIC internal variables are ini-

tialized through a subroutine, HNDINT, called by the executive as part of

the link module power-up initializations. After this the SIC handler only

executes the loop portion of the program shown in Figure 25.

When another task running in the LM requests of the executive an

SIC handler function, the executive sets up an SIC handler user file table

(UFT) for that request. The executive modifies the global variable SICUFT

to point to this UFT. The executive clears any delay the SIC handler may

* have and sets the task status to ready so that it will run when its turn in

the round robin schedule comes up.

When the SIC handler starts execution it calls the subroutine

FUNEXE to obtain and decode the function requested out of the UFT and then

call the proper function subroutine to execute the requested function. Each

function has its own function subroutine. These subroutines call lower

level subroutines, each of which perform a special service needed in pro-

cessing the requested function. Table 9 gives an Lierarchical presentation

of the subroutines used in the SIC handler. Once the function request has

been processed the status in the UFT (first byte of UFT) is changed to in-

form the calling task the status of its request. The subroutine FUNEXE

then returns control to the main routine of this handler.

64



UFTADR Request Status

Calling Task

NPID

SICFUN

Buffer Start or Position

Address Function

Buffer or Number of

Size Records

Figure 24 Format of SIC Handler's UFT

65



Table 8

SIC HANDLER REQUEST STATUS CODES

STATUS CODE DESCRIPTION

RQREJ +2 Request rejected by executive because
~this handler is being used by another
:' task.

BUSY +1 The handler is in the process of exe-
cuting the requested function.

SUCC Requested function completed success-
fully.

INVFUN -1 Invalid function requested.

COMERR -2 SIC comnunication with nameplate in
error.

FUNERR -4 Nameplate error in execution of func-
tion.

INTERR -5 SIC not properly initialized.

INVID -1e Invalid nameplate ID specified.

OVERFL -11 The size of the data requested to be
loaded is larger than the buffer area
specified to receive it.

EDWM -12 This status is set when trying to
read, write or move the record point-
er beyond the end of the nameplate's
read/write memory.

BOWM -13 This status is set when trying to
move the record pointer before the
start of the nameplate's read/write
memory.

66



COMM EkIyS

FUNEXEbecocit. oAKS. etcu&

UpICUFIC TL(

DTM p sict4 rneo10r

1 Loccd OFT

SIUF

PU-Figure 25 SIC Handler Task

67

. . ..



> 41

.4 0

U) C

Q)

4'-0

4 -J

40

$-4 0

'n. US wzi ~ 4

U))
4)

0)4 0 E-4 41(

P4 mh

-~z E) 24

> ) .1

El 4~ 09E-

w >U

41 U) ;4 z 4c

U) 5 1 C

0.4 4 0 1-=14U cch
14~

-A-
*Z4 0)

U6,



The subroutine UPDTSM is then called to check and update the SIC

status byte in shared memory. Then the UFT pointer, SICUFT, is modified to

point to a local UFT containing the function "update status in shared mem-

ory". The SIC handler then delays 500 milliseconds. If no task has re-

quested an SIC handler function by the time this delay expires, the execu-

tive will activate this handler. The SIC handler will then proceed to

execute the function in this local UFT. The subroutine FUNEXE merely returns

control if it decodes the function "update status in shared memory". Then

UPDTSM is called to perform this function. This scheme provides for a

periodic update of the status in shared memory even if a handler function

is not requested by a task.

Detailed information on all of the subroutines comprising the SIC

handler is given in Appendix C, Section 2-A.

2.3.6 SHARED MEMORY HANDLER

The Shared Memory Handler (SMHND) runs as a task in the LM under

control of the real-time executive. The three major functions of this

handler are: (1) arbitrate SM buffer control for data transfers, (2) clear

and set various flags, and (3) update the LM status byte in the SM. The

handler runs at least every 0.5 seconds, since at the end of every run it

issues an executive DELAY request of 0.5 seconds. This insures that even

if no task activates the shared memory handler, it is periodically activated

by the executive to update the LM status byte in SM. This LM status byte

is not updated with every SMHND call but only after a minimum of 0.5 seconds.

The shared memory handler is activated through an executive re-

quest by another task. The reason for this is to relieve the calling task

of the responsibility of needing to know any SM addresses or handshake

69



protocols. This is particularly important for nonresident tasks which have

no knowledge of any LM addresses or handshakes.

* . 2.3.6.1 SM Handler Functions

Following is a description of each of the ten SMHND functions

listed in Table 10. The various status returns from these functions are

listed in Table 11.

UPDSTS (Update status) is function number Z. This function is

used to update the LM status byte in SM.

* SETSTS (Set status) is function number 1. This function is used

to write the calling task status byte into the LA status byte in SM.

SETFLG (Set flag) is function number 2. This function is used to

set the flag bit in DXSTS byte in SM to indicate a calling task error con-

dition.

CLRFLG (Clear flag) is function number 3. This function is used

to clear the flag bit in DXSTS byte in SM.

SlREAD (Read Sl (DXSTS)) is function number 4. This function is

used by the calling task to read the DXSTS byte in SM.

SEQGET (Sequential get) is function number 5. This function is

used to get sequential data from SM data buffer which has been loaded by

the LMG.

REFGET (R.freshed get) is function number 6. This function is

used to get refreshed data from SM data buffer which has been loaded by the

LMG.

SEQPUT (Sequential put) is function number 7. This function is

used to put sequential data into SM data buffer for the LMG to read.

REFPUT (Refreshed put) is function number 8. This function is

used to put refreshed data into SM data buffer for the LMG to read.

70



.*- . . . . .. .. .. . . . . --.. - .... .- - .

Table 10

SMHND FUNCTIONS

0 UPDSTS - Update LM status.

1 SETSTS - Set task status.

2 SETFLG - Set flag bit.

3 CLRFLG - Clear flag bit.

4 SIREAD - Sl byte read.

5 SEQGET - Sequential data get.

6 REFGET - Refreshed data get.

7 SEQPUT - Sequential data put.

8 REFPUT - Refreshed data put.

9 FLGINZ Flags initialization.

71



Table 11

SMHND STATUS RETURN CODES

+1 Data not ready, or pending.

0 Success.

-1 Invalid function number.

-2 BUFSIZ CO or >63.

-3 BUFSIZ too small (eg < WSC).

-10 SEQPUT: RDY or REQ 0'

72



FLGINZ (Flags initialization) is function number 9. This function

is used to initialize all the data transfer handshake flags.

2.3.6.2 SM Handler Calling Sequence

The shared memory handler is called by another task through an

executive request. The executive builds a UFT table as shown in Figure 27

consisting of the parameters specified by the calling task, and passes it

to the SMHND. The executive sets the SMHND task to the ready state and re-

turns control immediately to the calling task. Thus the calling task must

relinquish CPU control to give the SMHND a chance to run. The calling

sequence is as follows:

label EXECRQ SMRQ,SM4FUN,BUFADR, BUFSIZ,UFTADR where:

EXECRQ - invokes the executive request macro.

SMRQ - identifies EXECRQ as being for SMHND.

SMFUN - identifies which of the ten functions.

BUFADR - starting address of the user buffer.

BUFSIZ - # of bytes available in user buffer.

UFTADR - user file table containing above information to be pass-
ed to handler. See Figure 27.

Table 11 lists the request status return codes. The calling

task may obtain the present status of the request by examining the first

byte of the UFT and relinquish CPU control if the request has not completed.

2.3.6.3 SM Handler Design

The general handler architecture is shown in Figure 26. Upon

being called it first checks the validity of the calling parameters. If

valid then a call is made to the particular function subroutine which exe-

73

h



COMMENTS

VALID UCTIONKNO: BUFSIZ 0 TREATED AS 64.
2) BUFSIZ 0g TO 63.?

CH N
OK

Y

[Go TO FUNCTION SUBR.

SMTIMNUPDATE TASK DECREMENTS
-0 SmTIm.

TE ST INSIUPDATE STS EVERY SOOM 5,

SmT*1z ons.NOT EVERY FUNCTION CALL.

LAY' A TASK CALLNG THE HANDLER
WILL KILL THE DELAY

FigUre 26 SMHND Flowchart

74



UFTADR-4 REQUEST STATUS

CALLING TASK NO.
-. SMFUN

-BUFADR

LBUFSIZ

Figure 27 SMHND Coiling Parameters Table

75



* cutes the requested function. Then a check is made to see if the handler's

local time of 0.5 sec has expired. If so, then the LM status byte in SM is

updated and the timer is reset to 0.5 sec. Next the UFT pointer is set to

point to the local UFT table containing the function request UPDSTS (46) and

an EXEC DELAY of 0.5 sec is requested. This insures that LM status is up-

dated periodically between 0.5 and 1 sec. Refer to Appendixc, Section 3-F foz

detail on the structure and workings for each function.

2.3.6.4 SM Communication Protocol

Figure 28 shows the organization and usage of the Shared Memory.

There are 256 bytes divided into four 64 byte areas. 0-63 is labeled IOBUF0

and is for data output from LMG to subsystem. 64-127 is labeled IOBUFI and

*I  is for data input to LMG from subsystem. 128-191 is labeled LMBUF and is

*: used for LM Function Command parameters between the LM and the LMG. 192-255

is used for all the control and status information between the LM and the LMG.

2.3.6.4.1 Function Command Protocol

The LMG-LM function command handshakes are handled by an interrupt

routine rather than the Shared Memory Handler. Two bytes in Shared Memory

* are used for the function command handshakes: 1) Address FF hex is written

by the LMG with bit 7 set to 1 and the command number in bit 0 - bit 6.

2) Address FD hex is written by the LM with the resulting command status

code.

Bit 7 of address FF hex is used as a semaphore and set to I by

the LMG when a command is written and is cleared to 0 by the LM to acknow-

ledge receipt of the command. The sequence of events in a command handshake

is as follows:

76



DCMDD FC F 51~ co 0W IN! to LM

CNOSTS I'D LIW cmd. status

FC DY REQ EaO Roy both side. RMWI I IL n
DXSTS FO x WSC

STSALR FA S I X ILM INP ICA4LA

P9 x No M ~T cleared by RESET
-17NDISKI~ iT written by SlWHND

LMSTS F8 LMi diagooti.-itnb LMWDIAG

F? NP ilit, SO ones., W/ W/o NP

F6 NP diagnosis, MNO error witnb PN

F 5 ICA conf., operetional,ero
wrte yICAN

F4 ICA error#, lIND error

LASTS F3 LA loaded, run/stop/~c written by SMN for NRSK.

F2 50 bytes
swere

NW1'ST CO 66CO is tested by S404 for presoes *I W card.

64 bytes

LMSUMOSF

7F

IOUI Is for input: SO LNIG.

64 bytes

IOUFI 40

3F

108UFO is for output, LMG-45SS.
64 bytes

.f. UPCF ________________ SMAE is 84100.
Figure 28 SM Memory MOP

77

iA



1) LMG writes into address FF hex with bit 7 set to 1 and the

command number in bits % through 6.

2) This generates an interrupt in the L. The interrupt routine

clears bit 7, checks the velidity of the command number, and

writes an intermediate status code 'command received' (+I)

into address FD hex.

3) When the Command Interpreter executes, it changes the inter-

mediate status to 'command active' (+2) in address FD hex.

4) When the Command Interpreter completes execution of the com-

mand it writes the final status code (6 or-n) into address

FD hex.

2.3.6.4.2 Data Transfer Protocol

Data transfers take place between the LMG and a subsystem. The

software performing this in the LM is a nonresident task loaded from either

the LMG or the NP. The nonresident task utilizes the SMHND to make data

transfers to or from SM. Three bytes in SM are used in the data transfer

handshakes: 1) Address FE hex written by LMG to cause LM to manipulate

handshake bits, 2) Address FC hex contains the buffer control bits, and

3) Address FB hex contains the byte count for data transfers. There are

four types of data transfers: Sequential input (SEQIN), Refreshed input

(REFIN), Sequential output (SEQOUT), Refreshed output (REFOUT). Following

is the handshake sequence for each of these.

SEQIN: 1) Nonresident task calls the SMHND function SEQPUT to put a

buffer of data into SM.

78



2) SMHND transfers data and byte count from task buffer into SM.

3) SMHND sets RDY1 (b7 in FC) - 1.

4) SMHND sets asynchronous service request (b7 in FA).

5) SMHND returns 'pending' (+I) status to nonresident task.

6) LMG clears asynchronous service request (b7 in FA).

* 7) LMG requests the buffer (if RDY1-l, then RDYIl9 and REQ1=I).

8) LMG reads the byte count and data from SM.

9) LMG issues STATUS function command to LM.

10) LM CMDITR function STATUS clears REQI to 0.

11) Nonresident task calls the SMHND function SIREAD to check

REQI bit. Transfer is complete when k"'7l has been cleared

to .

REFIN: 1) Nonresident task calls SMHND function REFPUT to put a buffer

of data into SM. If REQ1=l then 'pending' (+1) status is

returned to nonresident task and task relinquishes CPU con-

trol to try again soon.

2) SMHND clears RDY1 to 0.

3) SMHND transfers data and byte count from task buffer into SM.

. 4) SMHND sets RDY=1.

5) SMHND returns 'success' ( ) status to nonresident task.

6) LMG requests buffer (if RDYI-l then RDYI-0 and REQ11).

7) LMG reads byte count and data from SM.

8) LMG writes DXCMD (address FE hex) - 03 causing an interrupt

to the LM.
i

9) LM interrupt routine sets REQl-O and RDYI-I.

79

................



SEQOUT: 1) LMG requests buffer (if RDYb=l then RDYO-O and REQ$=1).

2) LMG writes byte count and data into SM.

3) LMG writes DXCMD (address FE hex) = causing interrupt to

the LM.

4) LM interrupt routine sets REQ0=0 and internal 'DATRDY' flagfl.

5) Nonresident task calls SMHND function SEQGET to get data.

If DATRDY = then 'pending' (+1) status is returned to the

nonresident task and the task relinquishes CPU control to

try again soon.

6) SM 1ND transfers data and byte count to task buffer.

7) SMHND clears internal DATRDY flag to .

8) SMHND sets RDYO=l.

9) SMHND returns 'success' (0) status to nonresident task.

REFOUT: 1) LMG requests buffer (if RDY =I then RDY00$ and REQ=I).

2) LMG writes byte count and data into SM.

3) LMG writes DXCMD (address FE hex) = 01 causing interrupt to

the LM.

4) LM interrupt routine sets RDYO-l and REQ0-9.

5) Nonresident task calls SMHND function REFGET to get data.

If REQ-=l then 'pending' (+1) status is returned to the non-

resident task which relinquishes CPU control to try again

soon.

6) SMHND sets RDYO-O.

7) SMHND transfers data and byte count to task buffer.

8) SMHND sets RDY0-I.

9) f SMHND returns 'success' (0) status to nonresident task.

80

. -.



2.3.7 INTERRUPT SERVICE ROUTINE

The LM Motorola 6800 processor has three different types of in-

terrupts: Reset, Nonmaskable Interrupt (NMI), and Interrupt Request (IRQ).

Reset is used during power up or as a result of the reset pushbutton being

depressed. This action causes the hardware to be initialized and the soft-

ware to execute from an initialization program. NMI is not used. IRQ is

the only remaining interrupt source and is used to service all system

interrupts. Interrupts are enabled by clearing the interrupt mask bit in

the condition code register (6800 instruction CLI). Execution of the inter-

rupt service routine (INT) takes place whenever interrupts are enabled and

IRQ pin goes low.

The sources for an IRQ are listed in Table 12. There is a sub-

routine to service each of these sources and INT makes a call to each of

these as shown in Figure 29. Since each subroutine is called for every

interrupt, each subroutine must check for its interrupt conditions and

simply return immediately if its execution is not required.

All machine registers are automatically saved by the 6800 hardware

upon an interrupt and are automatically restored upon execution of a Return

from Interrupt (RTI) instruction. A detailed description of the interrupt

routines is presented in Appendix C, Section 2-G.

2.3.8 COMMAND INTERPRETER

The Command Interpreter (CMDITR) task runs in the LM and inter-

prets twelve (12) distinct commands from the LMG. These commands are listed

with a short description in Table 13. The LMG issues a command by writing

the corresponding code into the command byte (address FF) in shared memory.

Status of the command is returned to the LMG in the command status byte

81



A~D-A124 621 THE REMOTE LINK UNIT: A DEMONSTRATION OF OPERATIONAL 2/
PERFORMANCE PART III.. (U) HOUSTON UNIY TX DEPT OF
ELECTRICAL ENGINEERING C J TAYDRA ET AL. AUG 81

UNCLASSIFIED RFWL-TR-i-113i-PT--1- F336i5-89-C-1O95 .F/G 17/2 N

EomhohEEmhosiE



mao L ..

1.25 11.

.41ICOCOP RESLUINTSCHR
NAIOALBUEA O sANARS4 96-



Table 12

IRQ SOURCES

1. Time

2. Ct4DINT

3. DXINT

4. INTPIA

* 5. NP RX

82



COMMENTS
INT

CLOCK INCREMENT CLOCK TICK
COUNTER FOR UPDATE TASK

INTPIA DATA TRANSFERS FOR LMG
s/W ACCESS TO SM.

INTLMF LMG(WITH H/W SM) FUNCTION
INTERRUPT. JSR LMFI.

INTDX LMG (WITH 111W SM) DATA XFER
INTERRUPT. JSR DXI.

*SICRX NPHND RECEIVES SERIAL
BYTE FROM NP.

4. RTI

Figure 29 INT Flowchart

83



Table 13

LM COMMANDS

PRGMLD 81 Load non-resident task.

RUN 82 Run non-resident task.

STOP 83 Stop non-resident task.

NPDIAG 84 Same as NPINIT.

85 Reserved.

CANCEL 86 Cancel the previous cmd. that is pending.

XFRTBL 87 Transfer LM system tables to/from LMG.

STATUS 88 Clear input buffer request bit.

RESET 89 Resets CMDITR and ICA.

RESTRT 8A Jump to power up restart location.

NPINIT 8B Request NPHND to initialize NP's.

CONFIG 8C Configure selected subsystem.

NOOP 8D No operation.

84
: ... . .-



7,- - -- - - -.

(address FD) in shared memory and are listed in Table 14. The commands

are mutually exclusive and a new command may not be issued until the previous

command has been completed, with the exception of CANCEL and RESTRT, which

may be issued anytime.

The command interpreter task shown in Figure 30 works in con-

junction with the LM function interrupt routine shown in Figure 31. When

the LMG writes into the command byte in shared memory, the resulting interrupt

initiates the LM function interrupt routine. The routine checks the command

for validity or express (CANCEL, RESTRT) and then does one of four things,

depending upon the conand and the state of the command interpreter task:

1) if the command is express (ie CANCEL or RESTRT), then it is executed to

completion; 2) if a previous command is in progress, then an error status

(-2) is returned to the LHG; 3) if the command isinvalid,then an error status

(-I) is returned to the LMG; 4) otherwise, a flag is set up for the command

interpreter task to recognize and begin execution. A 'command received'

status is returned to the LMG.

The command interpreter task in its quiescent mode continually

checks for the new command flag set by the LM function interrupt routine

t and relinquishes CPU control if the flag is not set. When the flag is

found set, the command status to the LMG is changed from 'command received'

to 'command active'. The interpreter task then calls one of twelve command

modules which return with a module status. This status is copied to the

command status in shared memory and the new command flag is cleared. The

interpreter task then returns to its quiescent mode waiting for another

,, comand.

A description of each of the twelve commands will now be pre-

sented.

85



Table 14

CMDITR STATUS RETURN CODES

Command Status Indication

General +2 Command active.
+1 Command received.
0 Success.
-1 Invalid command.

-2 Another command still in progress.
-3 Command not implemented yet.
-4 Command cancelled.

PRGMLD -10 # of bytes not from -1 to +61.
-11 Existing non-resident task is not dormant.
-12 TYPE not 0 or 1.
-13 SOURCE not 0 or 1.
-15 XFR or TRLR record with SOURCE = NP.
-16 Invalid start address.
-17 Invalid end address.
-18 XFR record with no HDR record.
-19 TRLR record with no XFR record.
-20 EXEC failure to REMOVE previous task.
-21 NP failure to upload task.
-22 EXEC failure to INSTAL NP task.
-23 Program checksum not zero.
-24 EXEC failure to INSTAL LMG task.

RUN -10 A task is not installed.
-11 The task is not dormant.
-12 Task checksum not zero.

STOP -10 A task is not installed.
-11 The task is dormant
-12 Failure to STOP after 5 sec.

NPDIAG - see NPINIT.

CANCEL None

XFRTBL -10 Invalid table number.
-11 To/from LM not 0 or 1.
-12 # bytes not from 1 to 64.
-13 Offset C0.
-14 Attempt to write a read only table.
-15 TIME: # bytes too large.
-16 TIME: Offset too large.
-17 NPREC: Function not 0 to 5.
-18 NPREC: Invalid # bytes.
-19 SICSTS: Table shows 41 * of NP's.
-20 SICSTS: Table shows )20 * of NP's.

86

N



Table 14 (cont.)

CMDITR STATUS RETURN CODES

Command Status Indication

XFRTBL -21 NPHND error.
-22 ICCNPG: ICAHND error GRP A.
-23 ICCNFG: ICAHND error GRP B.

STATUS - None

RESET -10 ICAHND fail to reset ICA.

RESTRT None

NPINIT -10 NPHND error.

CONFIG -10 SOURCE not 0 or I (LI4G or NP).
-11 GROUP not 1 or 2 (A or B).
-12 ICAHND error.
-13 NPHND error.
-14 Invalid NP table.

NOOP - None

44

i,

-i

r. 87

-.,i''. ,2'2 " .. -. . .. .-. . - . . • . . .. .



.1

COMMENTS

WAIT FOR NEW COMMAND
FLAG WHICH IS SET BY

LMFI WHEN A NEW CMD
DIS RECEIVED FROM THE

+ LMG.

SEND 'CMD ACTIVE'

TO LMG.

GO TO THE COMMAND ROUTINE 13 COMMAND TABLE
ENTRIES. ONLY THOSE

LABELED INOEXPR I ARE
- DONE HERE.

EACH ROUTINE RETURNS
WITH CMD STATUS.

SEND CMD STATUS

TO LMG.
CLEAR NEW CMD FLAG.

Figure 3o CMDITR Flowchart

88



77. 
. .

COMMENTS

LMFI

CMDCHK

GOK TO~ CMuB.ALCDTAINTIS

LABLE EXPRES

SX

EACHT ROTN

H1C3 _ _ _ _ _ _ _ NTIE

Figur 31 LMFI FlwcI ONLhENrIE

89EEDEP

N~ AR DOEHEE

. . . . . . . . . . . . . . . . . . . . . .



PRGMLD (Program Load) is command number 81 hex. This command is

used to load programs into the nonresident task area in the LM from either

the NP or the LMG and then to install the loaded program as a task with the

executive.

RUN (Run nonresident task) is command number 82 hex. This com-

mand is used to activate the nonresident task for running as part of the

real-time system.

STOP (Stop nonresident task) is command number 83 hex. This com-

mand is used to stop the execution of the LM nonresident task.

NPDIAG (NP diagnostic) is command number 84 hex. This command is

used to cause the Nameplates to run their internal diagnostics. NPDIAG is

identical to NPINIT and is implemented as a jump to NPINIT.

Command number 85 hex is reserved.

CANCEL (Cancel) is command number 86 hex. This command is used

to stop the execution of any other command module already in progress.

XFRTBL (Transfer table) is command number 87 hex. This command

is used to transfer all or part of any one of eleven LM tables to or from

the LMG.

STATUS (Status) is command number 88 hex. This command is used

to assist in the data transfer handshake for sequential input to the LMG

by clearing the REQ1 bit in the Sl byte in SM (address FC hex).

*: RESET (Reset) is comnand number 89 hex. This command is used to

reset the state of the CMDITR task and the ICA hardware.

RESTRT (Restart) is command number 8A hex. This command is used

to cause the LM to Jump to its power up restart location.

NPINIT (NP initialization) is command number 8B hex. This com-

90

. - . - .... . . .. . - . .... . - . , -4:, . . : , - - - . . , . , ._ .. ..." . . , : .: ..



... .. ... . - . - - - - - -m . --

.°

mand is used to cause the NPHND to reset all the NP's, assign addresses to

the NPs, and cause each NP to run its internal diagnostic.

CONFIG (ICA configure) is command number 8C hex. This comand

when used causes the ICAHND to configure either group A or group B of the

ICA with configuration parameters from either the LMG or the NP.

NOOP (No operation) is command number 8D hex. This command is

used to provide the LMG with means of exercising the command handshake

without causing anything to happen.

The parameters associated with each command are listed in Table

15. Interactions with the rest of the system are shown in Figure 32.

Refer to the User's Manual for more detail on usage of the commands. Refer

to Appendix C, Section 2-H.

2.3.9 NONRESIDENT SOFTWARE

The LM has 2K bytes of read/write memory (addresses $4$0 to 0BFF)

allocated for loading external programs for execution. An external program

may be either uploaded from a subsystem nameplate or downloaded from the

LMG. Although there are many types of programs (data I/O, subsystem diag-

nostic, calibration), only one program may be loaded at any one time. This

program is treated as an independent task.

A typical LMG command sequence to the LM might be as follows:

S1) Issue command STOP to halt the present nonresident task.

The STOP command module will set a STPRQ flag for the NRTSK

to executive request EXIT.

* 2) Issue co-nand PRGMLD, which will load an external program

into the LM nonresident task area from either the NP or the

LMG. The PRGMLD conmmand module will perform the following

91

;. ' -. .2 '- ''- - t ~ ' , ---. .-l V . -.- -'.- ..- - - -.".- - - - - - - -. .



Table 15

LH COMMGAND PARAMETERS

PRGMLD header record: 80 - FF

81 - TYPE 00O - 1/0 program
01 - DIAG program

82 - SOURCE 00- MG
01 - NP

PRGMLD transfer record: 80 - # bytes, 01 to 3D

81 - starting load address, high byte

82 - starting load address, low byte

83 to BF - program bytes

PRGMLD trailer recoru: 8.0 - 00

81 - program checksum

XFRTBL: 80 -table *,01 to 08

81 # bytes

82 -offset into table

83 -to/from 00 -LM4 to LMG
01 - MG to LM

84 to BF -table loaded by LM or 1MG depending on to/from
byte

CONFIG: 80 -SOURCE 00 - LMG

01 - NP

81 -GROUP 01 - GRPA
02 - GRPB

82 to 89 -configuration data if from 1MG

92



L M
FUNCTION

INTERRUPT
ROUTINE

Figur 32 CmadL nepee InteARacin
CMDF93



functions:

a) Request the executive to REMOVE the previous task from

the active task list.

b) Load the new program into the nonresident task area.

c) Verify the new program's checksum.

d) Request the executive to INSTAL the new task on the

active task list.

3) Issue command RUN to start the nonresident task. The RUN

command module will issue the executive request ACTVAT.

The nonresident task may use resident LM resources. These include

SM, ICA, and NP handlers, data and time of day, and in particular executive-

supplied math functions. As an example, for this demonstration there is a

synchro input/output task which when running requires the following services

and resources:

EXECRQ ICARQ for synchro input voltages.

EXECRQ MATH for voltage checks and calculations.

EXECRQ ICARQ for synchro output voltages.

EXECRQ SMRQ to send degrees data to LMG.

EXECRQ DELAY for loop timing between outputs.

EXECRQ SICRQ to record errors.

TIME to record time of error.

In order to properly load and execute a nonresident task, the first

thirteen bytes of the nonresident task must be a header of the form:

1) to 6) Program name - 6 ASCII characters

94



7a

7) Start address H

8) Start address L

19) End address+l H

10) End address+l L

12) Initial stack pointer H
12) Initial stack pointer L

13) Reserved for insertion of program checksum

These parameters are used by the system during both loading and activation

for execution.

95



SECTION 3

INTERFACE CONFIGURATION ADAPTER

* The Interface Configuration Adapter (ICA) is the component that pro-

vides the LM with its universal interfacing capability. The RLU, working

with Electronic Nameplates, can identify interfaced subsystems and auto-

* matically configure the ICA with the appropriate electrical interface.

The ICA can be used with a wide variety of I/0 signal types. The

*interface consists of two groups of four I/O channels. Each group can be

independently programmed to support either:

1) 4 AC or DC analog input or output lines, or

2) 4 parallel digital input or output lines, or

3) 1 serial synchronous digital input or output channel with
handshaking, or

4) 1 synchro input or output channel, or

5) a variety of self-test terminations.

The ICA can' be described in terms of the following 7 major hardware

sections:

1) Signal input and output (SIO) channels for Group A.

2) SIO channels for Group B.

3) Reference Generation (shared by both groups).

4) Address decoding and configuration control (ADCC) for Group A.

5) ADCC for Group B.

6) Serial input and output (SERIO) circuitry for Group A.

7) SERIO circuitry for Group B.

96

. ., . . .- . .' . _ , - , . , . . , . " - . . • . . . . . . . . . . . , .. ....



These sections and their interconnections are indicated in Figure 33.

3.1 SIGNAL 1/0 CHANNEL DESIGN

A block diagram of a signal input/output (SIO) channel is shown in

Figure 34. The channel provides the required functions of digital-to-

analog conversion, analog-to-digital conversion, amplification, buffering,

sampling and logic level processing. The SIO channels interface to the LM

through several control lines, read/write strobe lines and the ICA bus.

The SIO topology is unique in that it provides a signal wrap around

feature. Each SIO channel contains an ADC which is continuously updated

at an80 samplesper second rate. This ADC can be read at any time by the

LM to measure the input level if the SIO channel is programmed for input

or to measure the output level if the SIO is programmed for output.

The input and output functions are completely independent in the SIO,

sharing only the common subsystem bound I/O lines (+/-). With the SIO

channel programmed for output the input can be used to perform several

internal test functions or to monitor the output. The output can be pro-

grammed as single-ended (with the return through the SIO ground line) or

as differential. This programming has no effect on the input configuration.

The output signal is derived from one of three sources:

1) the output DAC,

2) the group HILEVEL signal line, or

3) the group LOLEVEL signal line.

This selection is through the output MUX as shown in the Figure 34 . Ad-

dressing of the MIX is controlled by the ADCC section of the ICA. For

97



l0i II 0 (n

0000 0 00 0

0

U)U

W W 4J

ww ILI

g 9 0

44

w0

ww

00

323

98



I CA / SUBSYSTEM INTERFACE

0 0

44
00

the

I040
v 4449z

DQ -Ja 5

3V431NI VOI/fl
99



analog output, the output DAC is selected. The reference applied to the DAC

originates in the ADCC section of the ICA. For DC outputs the DAC reference

is 10 volts. For AC outputs the DAC reference is a 400 Hz sinewave of fixed

* amplitude. For digital output the MUX is addressed to the programed HI or

LO logic level depending upon the desired output logic signal.

Digital inputs are processed through the normal input HUX and Differen-

tial Amplifier. The logical threshold is programmed for the group as the

THRESLEVEL shown in the Figure 34. Following level slicing, the logic

input is processed and made available to the LM on the DIGIN line. This

section is always operational so that simple level detection can be accom-

plished in either the digital or analog modes.

Appendix B, Section 3-A contains a detailed schematic of the Signal I/0 channel

and will be referred to in the discussion below. The discussion will focus

on the operation of Channel 6 but will of course be applicable to each of

the four channels in a group.

3.1.1 ANALOG INPUT PROCESSING

The analog input signal processing is accomplished by the input

multiplexer Ml, the input amplifier M2, the track and hold circuitry con-

sisting of M15 and M8 and the channel analog to digital converter (ADC)

Mll.

The input multiplexer is programmed to either address 3 or 7 to

allow input signals to reach the input amplifier. Note that the input

amplifier is an instrumentation amplifier capable of implementing either a

single-ended amplifier or a differential amplifier. Address 3 results in

a single-ended input with the positive (+) input lead going to the positive

input of the amplifier and the negative (-) input lead being open circuited.

100

• ,. - .--. . . . . . . . . . . . .



The signal return is assumed to be provided via the group signal return line

of the interface cable. Additionally address 3 uses the multiplexer to

ground the negative input of the amplifier. Address 7 results in a differ-

ential input configuration with the + input lead going to the + input of the

amplifier and the - input lead going to the - input of the amplifier.

The common mode limit of the input amplifier (+1- 10 volts) must

be observed by any input signals. The amplifier is protected from overloads

at the input by the protectio, circuitry of Rl, R2 and Dl-D4. The amplifier

provides a gain of one to any differential signal applied to its inputs.

The common mode rejection ratio of the input amplifier is specified as

greater than 70 dB at a gain of one. The input impedance of the input

amplifier is greater than 3x10**9 ohms. The amplifier output is applied

to the input of the track and hold circuit.

The track and hold circuit provides the signal processing required

by the analog to digital converter. For DC input signals the track and hold

circuit is used in a conventional manner. The +/- line from the ADCC sec-

tion is held in the + state which results in the track and hold circuit

having a gain of one when in the track mode. The signal is sampled and the

*,. sample converted by the ADC at an 800 samplesper second rate. The hold/

track modes are controlled by the H/T line from the ADCC. For AC signals

the +/- line is used to invert the gain of the track and hold circuit at an

800 Hz rate. The gain is made positive during the positive half cycle of

* the ICA 400 Hz reference signal and is made negative during the negative

half cycle. The H/T signal takes a sample at the positive and negative

peak of each cycle of the 400 Hz reference. If the input AC signal is

derived from the ICA 400 Hz reference the circuit operation results in

101



a.

sampling the peak value of the input waveform and obtaining a sample whose

polarity is indicative of the phase of the input.

The ADC chip used is designed to accept inputs of 0 to + 5 volts

and to provide a straight binary conversion on these inputs. The ICA is

designed to process signals in the range of +/- 10 volts. The output of

the track and hold circuit is scaled by resistors R13, R14, and R15 to

accommodate the ADC input requirements. The ADC output count relates to

the input voltage through the formula

Vi - -12.8 + 0.l*(COUNT)

The correspondence between significant voltages and counts are given below.

Count Voltage

Decimal Hexadecimal

- 0 -12.8

28 1C "10.0

128 80 0.0

228 E4 +10.0

255 FF +12.7

The ADC runs continuously in any of the ICA modes. The ADC chip

has an internal register which is updated at the 800 Hz sampling rate de-

scribed above and which can be accessed at any time by the LM.

*3.1.2 DIGITAL INPUT PROCESSING

Digital inputs are processed through the input amplifier M2 in

the same manner as are analog inputs. This provides for a high input

impedance for the digital input as well as the capability of either single-

102
I'.

05.,.. . . . . . . . . . . .



ended or differential processing as described above. The output of the

input amplifier is connected to an analog comparator M7. The comparison

threshold is programmed in the reference generation circuitry described in

Section 3.2. The comparison threshold can be programmed between +/- 10

volts. This allows the ICA to process inputs from virtually any standard

logic family. The resulting logic states at the output of M7 reflect

whether the input is above (logic one) or below (logic zero) the programmed

threshold value. Negative logic can be interpreted by proper handling in

the LM via programs in the Electronic Nameplate.

Logic processing circuitry for the SIO channel consists of M9 and

M10 which can be programmed to two distinct modes. In the follow mode the

output of the comparator is continuously sampled at a 500 KHz rate by M9A.

The Q output of M9A is multiplexed to the DIGIN-OR line by M10 and is read-

able by the LM by means of circuitry described in Section 3.3 below. The

DIGIN-OR line simply represents the most recent sample of the comparator

output and will follow this output continuously. In the latch mode the

sampled comparator output is used in latch M9B. If the input crosses the

programmed comparisc-i threshold from above M9B will be set. The state of

M9B is multiplexed to the DIGIN-OR line by M10 and is readable as before.

Each time the four DIGIN lines of a group are read by the LM, circuitry in

" the ADCC section of the ICA resets the input latches (register M9B) for the

entire group. This mode is designed to process momentary signals such as

produced by contact closures.

3.1.3 CONTACT CLOSURE PROCESSING

Contact closures, either floating or to ground, can be detected

in either of the two modes described in Section 3.1.2.

103



For floating contacts, a differential input is configured by the

input MUX M1 and the internal Thevenin sources are placed on the I/O lines

by activating analog switch M3. This results in a balanced +/- 5 volt

source with a 6.7 K ohm source impedance which is applied across the input

*leads. If a contact is closed across the input pair the input voltage is

* reduced from 10 volts to 0 volts. A programmed threshold of 5 volts

applied to M7 will result in the state of the contacts being represented

by the logic level at the output of M7. This level can be processed as

any other digital input.

Contacts to ground are processed by selecting a single-ended

input configuration and setting the logic threshold to 2.5 volts. The ex-

ternal contact is placed from the + lead to ground and sees a Thevenin

source in the ICA of 5 volts and 3.33 K ohms. The contact closure reduces

the output of M2 from +5 volts to 0 volts.

3.1.4 ANALOG OUTPUT PROCESSING

The analog output signal processing is accomplished by the output

digital-to-analog converter (DAC) components M13 and M14, the output multi-

plexer M12 and the output buffer amplifiers comprised of M4, M5 and M6.

The analog output value is determined by two parameters which are input to

the DAC: the output signal type (DC or AC) determined by the reference

input to the DAC and the output signal amplitude determinJ by the digital

rinput to the DAC. The DAC is a four quadrant multiplying type and as such

can provide output signals of the form

V ot- Vref*(128-COUNT)/128

where Vref is the reference voltage applied to the DAC and COUNT is the

104



value of the digital input to the DAC. COUNT is interpreted as varying

between +127 and -128 (offset binary). The table below illustrates the

correspondence between COUNT and special voltage values.

Count
Voltage

Decimal Hexadecimal

0 1= 10.0

1 01 9.92

128 80 0.0

255 FF - 9.92

* -, For single-ended DC output the reference voltage Vref is set to

+10.00 volts. The available analog output ranges from -9.92 to +10.00

volts. The single-ended state is detected in the ADCC circuitry by Ugic

which determines the number of output buffer amplifiers which are enabled

(one => single-ended, 2 -> differential outputs). When two channel buffers

are enabled, the value of the voltage Vref is reduced to +5.00 volts. The

differential output ranges from -9.92 to +10.00 volts. For single-ended

AC outputs, Vref is a 20 volt P-P sinewave at 400 Hz. This allows the

output to range from 0 to 20.00 volts P-P at 0 degrees phase shift relative

to the reference and from 0 to 19.84 volts P-P at 180 degrees phase shift

relative to the reference. For a differential output configuration, Vref

is reduced to a 10 volt P-P sinewave at 400 Hz, providing the same output

range as the single-ended configuration.

When the ICA is configured for analog output the DAC output is

routed to the output buffers through M12. This is accomplished by address-

ing M12 with address 3. The logic for addressing M12 is in the ADCC section

105



of the ICA.

The buffer amplifiers consist of M4, M5, M6 and their associated

circuitry. These amplifiers must provide a very low output impedance to

drive the subsystems and yet must be controllable so that they present

essentially an open circuit when the channel is used for input. The re-

quirement for low output impedance prevents the use of a conventional

analog multiplexer to connect or disconnect the buffer from the input/out-

put leads. A typical electronic analog switch has an on resistance of 100

ohms, which is far too large to add to the buffer output impedance. The

circuit used solves the problem by utilizing complementary symmetry output

* buffers (Ql-Q2, Q3-Q4) inside the loop of an op-amp stage (M4A, M4B). The

buffer stage is switched in and out of the op-amp loop by analog multi-

plexers M5, M6. The op-amp stages retain feedback in either mode through

the multiplexer. Note that if the buffer is removed from the op-amp loop

the only effect on the input/output lines is a small leakage current (the

difference between the Icbo's of the NPN and PNP buffer transistors). When

the buffer is activated the multiplexer switch resistance is inside the

loop of the op-amp so that a very low output impedance is maintained. The

complementary buffer is biased for class B operation and as such can con-

tribute crossover distortion to high frequency AC waveforms. The op-amp

selected has a slew rate of 13 v/sec and at 400 Hz the crossover distor-

tion is negligible.

Analog outputs can be either single-ended or differential depend-

ing upon the programing from the ADCC section. Each buffer amplifier

(positive and negative) is individually controllable. As mentioned above,

the ADCC logic automatically alters the output DAC reference so that the

106

.'.. .



output range is always +1- 10 volts for either single-ended or a differen-

tial output modes.

3.1.5 DIGITAL OUTPUT PROCESSING

Digital output levels corresponding to the two binary logic states

(one and zero) are programned in the DAC's located in the reference genera-

tion section of the ICA. These levels are made available to the analog

output buffers through the analog multiplexer M12. Each logic level can be

independently programmed to a value in the range of +/- 10 volts. This

allows interfacing to a wide range of logic families and easily implements

a negative logic scheme. The logic in the ADCC section provides proper

addressing to multiplexer M12 so that either address 0 (corresponding to

the value programmed for a logic zero) or 1 (corresponding to the value

programmed for a logic one) is selected based on the logic level programmed

by the LM for each group channel. Note that the logic levels are the same

for all channels within a group.

3.2 REFERENCE GENERATION

A block diagram of the reference generation portion of the ICA is

shown in Figure 35. This portion generates the following reference

signals: 400 Hz AC reference waveform, +5.00 volt DC(ADC reference),

+10.00 vdc, +5.00 vdc, 20 vp-p ac, 10 vp-p ac(DAC references), HI, LO, and

THREShold levels used in processing digital signals in the SIO groups.

Appendix B, Section 3-B contains a complete schematic and parts list for the re-

'* ference generation section which will be referred to in the following

discussion. The reference generation section contains portions which are

shared by both groups and portions which are group specific. This common-

ality will be pointed out in the following sections.

107



U U

* II-
0 0 L0

+ -Il

00l VI0W

108



3.2.1 400 Hz AC REFERENCE

The 400 Hz AC reference signal is used to generate 400 Hz AC out-

put signals and to provide timing to process 400 Hz AC input signals. It

is derived from the LM master clock (1 MHz) by direct digital synthesis.

The basic timing is accomplished with counters Ml, M2, and M3.

Ml and M2 are used as divide by 5 counters, resulting in 40 KHz at the

output of M2. The output of M3 is decoded in M5 at a count of 50 and reset

resulting in a total division of 50x5x5 or 1250 and an 800 Hz timing signal,

R800. M7 contains 50 8-bit samples of a sinewave. These samples, addressed

at 0 through 49 within the ROM, cover one half cycle of the sinewave. The

samples are applied to the reference DAC (MB) at a 40 KHz rate so that each

half cycle is eveloped in 1/800 second. M1OA and M9B, combined with

timing through M14A and Ml4B, provide synchronous signal inversion so that

a full 400 Hz sinewave results at the output of M9B. This signal is used

internally as the AC reference for various DACs and is made available

externally through the ACREF and ACRET lines in the ICA/Subsystem interface

cable. Ql and Q2 provide signal buffering for the AC reference.

Timing for the ADCs in the SIO channels is also generated in

this section. The outputs from M3 are decoded in M6 at a count of 25 to

provide the H/T timing signal. This signal results in the track and hold

circuit entering the hold mode at the peak of the ICA reference. Assuming

that there is no phase shift between the generation and the measurement of

4the reference, the ADC will digitize a peak value from the AC waveform.

The signal +/- is also generated in this section (Ml4B, M18C). This signal

is used in the SIO channel to synchronously invert AC signals.

The 400 Hz reference is buffered as described above and made

109



available to the subsystem through connector J4. It is also used as the

group analog output DAC reference when the group is configured for AC out-

put. The full 20 vp-p reference is used for the single-ended configuration

and a 10 vp-p reference is used for differential configurations.

3.2.2 +10.00 AND +5.00 vdc REFERENCES

M17A and its associated circuitry are used to generate the DC

references. The output of M17A is a constant +10.00 volts, calibrated with

R4. MI7B provides a buffered +5.00 volts to be used as the reference volt-

age for the ADC's located in the SIO channels. The DACs in the SIO

channels of Group A use as a reference the output of Ml5A. Group B DACs

use the signal from M15B. These signals can be a constant +10.00 volts, a

constant +5.00 volts, a 20 volt p-p 400 Hz sinewave or a 10 volt p-p 400

Hz sinewave depending upon the exact configuration programmed into the ICA.

Single-ended DC outputs require a +10.00 volt DAC reference. Differential

DC outputs use a +5.00 volt DAC reference so that the amplitude program-

ming is the same for both single-ended and differential configurations.

Single-ended AC outputs require a 20 volt p-p DAC reference while differen-

tial AC outputs use a 10 volt p-p DAC reference. The selection logic for

Group A is implemented with Ml3A, MIA, M16A and Ml6B. The selection for

Group B is implemented with Ml3B, MIIB, M12A and Ml2B.

3.2.3 HI, LO, AND THREShold LEVEL REFERENCES

U1 through U6 are used to generate and store the HI, LO, and

THREShold references used in groups A and B. Each Ui is a full four quad-

rant multiplying DAC which can be programmed directly from the ICA bus.

The write strobes are generated in the ADCC circuitry described in Section

110

"" . .



3.3. The DAC used for setting the digital THREShold level uses the +10.00

volt reference and can generate a THREShold value between + and - 10.00

volts. The DACs which hold the HI and LO digital output levels use D/A

reference for the appropriate group. This reference is automatically set

to +10.00 volts for single-ended DC output configurations, to +5.00 volts

for differential DC output configurations, to a 20 volt p-p zero phase sine-

wave for single-ended AC output configurations, and to a 10 volt p-p zero

phase sinewave for differential AC output configurations. The programmed

count in each of the DACs allows setting the HI and LO references to

values within a factor of +1 to -l of these values.

3.3 ADDRESS DECODING AND CONFIGURATION CONTROL

The address decoding and configuration control (ADCC) function is

performed on a group basis. The following will discuss the operation of

the ADCC section for Group A but is applicable to the Group B ADCC section

as well. The block diagram for the ADCC function for one group is shown

in Figure 36. Appendix B, Section 3-C contains a complete schematic and parts

list for the ADCC section.

The ADCC function is divided into two basic operations: the decoding

of addresses for the various addressable modules in the group and the

control of the SIO configuration.

3.3.1 ADDRESS DECODING

The addressable modules associated with each group are:

1) The 7 DACs (4 for analog output values from the 4 SIO

channels and 3 for the group HI, LO, and THREShold values).

2) The 4 ADCs (one for each SIO channel).

.:":: i111



T00

10. z

-J _j UO) Uz
_- 0

0

U) LL.. f

z bo

4 0 0

u0

I-

N% w

Ch

zco

33VA3fN VO 1VA-0

4(I) 012



3) The SIO configuration words (2 addresses).

4) The peripheral interface adaptor (PIA) (used for the 4
parallel digital lines of the group and to provide control
lines associated with the serial I/0 function, requires 4

*: addresses).

5) The synchronous serial data adapter (SSDA) (used for the

serial I/0 function, requires 2 addresses).

The above units require a total of 15 unique addresses (note that the 4

analog output DACs and the 4 analog input ADCs use the same 4 addresses,

an LM write is directed to the appropriate channel DAC and an LM read is

directed to the appropriate channel ADC). The address map for each group

is presented in Figure 37.

Ml and M7 perform the basic address decoding function. Ml de-

codes relative addresses 0 through 7 while M7 decodes relative addresses

8 through 14. The logic of M4A-B, M5A-B, M6A-E, MIOA, MIOD, and M11A-B

serves to select the address range in blocks of four addresses using the

address lines A2 through A6 from the LM. Note that the only change re-

quired by Group B is the inclusion of an inverter in the A4 address line

to displace the addresses by 16.

Devices are read by the LM by decoding the appropriate address

and directing the read strobe to the appropriate register. The delays

caused by the use of CMOS logic does not cause problems during reads since

the data is taken from the ICA by the LM at the end of the machine cycle

and the decoded read enable occurs near the beginning of the cycle. The

setup times for the interface registers are met by using a 1 MHz clock for

the LM clock. Devices are written into by decoding the appropriate address

and directing the write strobe to the selected register. The delays caused

by the use of CMOS logic are a problem since the data is to be taken from

113



DATA 8SiFP5RS

ADDAISS

cm, 7ou a eiaL tt/@lot

q817~

q84 6  OiROUP A CoNFtofua&Inm BUFFERS

qasw ____________ 
Top. Lcqj w"~ 0

GROP Topm@ooq w"~ i

Low tA.veL wo tkag

PIA ccoavt.L

Figure 37 Memory Map of ICA Buffers

114



the data bus at the end of the machine cycle and the edge is delayed rela-

tive to the data. It is possible for the data on the LM bus to change

before the decoded write edge propagates to the selected register. This

problem is circumvented by the use of M29A which produces the write edge

(ie, terminates the write strobe) before the LM cycle is finished.

3.3.2 CONFIGURATION CONTROL

The configuration words control the data type and direction

through the SIO channels. Figure 38 contains a description of the bits

used in each of the two configuration words. The standard configurations

are those in which each channel of the SIO performs the same function.

These include DC and AC analog input and output, as well as parallel

digital input and output. The choice of single-ended versus differential

input and output is determined by the programming of the input multiplexer

address lines (INMUX0-A, INMUX1-A and INMUX2-A) and the driver enable lines

(DVRP and DVRN) respectively.

The non-standard SIO functions are those in which the channels

are not individually programmed the same. These include the serial and

synchro input and output modes. These special configurations are control-

led by M16 and associated logic.r.

K..: For synchro input, output Sl of 116 is high which results in

inhibiting the drive enable lines to channels 0, 1, and 2 of the group.

* The DVRP and DVRN lines can be applied to channel 3. This results in an

AC reference being made available through channel 3 while channels 0-2 are

set up as single-ended input channels for the three legs of a synchro

winding. Note that channel 3 is forced to a differential output config-

uration independently of the state of DVRN. This allows a full 40 vp-p

. 115



CONFIGURATION WOR 4
AD ACDC DIV DP DVN M2 IM t

AD - Selects between analog (1) and digital ()

%ACDC - Selects between AC(l) and DC(%).

DIV - Thevenin source on (1) or off ().

DVP - Positive voltage driver selected (1) or deselected 0).

DVN - Negative voltage driver selected (1) or deselected (0).

IMO, IMl, - Select one of eight input modes. Normal operations
IM2 utilize single-ended (3) or differential (1) mode.

The remaining six modes are used for test purposes.

CONFIGURATION WORD 1

JDM3 JDM2 I'DM1 I DM$ I X J FLG OEN j LF

DMV-DM3 - 3elect one of the special configurations: reset (0),
test (15), serial-out (8), serial-in (4), synchro-out
(2), and synchro-in (1).

FLG - Selects flag (1) or refresh (6) modes during serial
input.

OEN - Voltage drivers on (1) or off ().

LF - Selects between latched (1) and followed () modes
during momentary discrete inputs.

Figure 38 ICA Configuration Words

116

44

o -, . .. . ° -. ° .. -. . . ... .. . .



differential output from channel 3 (if DVRN is programmed low so that the

reference generation section maintains a full 20 vp-p reference) which

makes it possible to drive a wide range of available synchros.

*For synchro output the S2 output of M16 will be high. This allows

channel 3 to be configured as a differential channel independently of DVRN.

Normal synchro output would use channels 0-2 (single-ended) to drive the

three legs of the synchro control winding (referenced to the group signal

return) and use channel 3 (differential) to drive the excitation winding

as a two terminal floating load.

For serial input the four group channels are used as follows:

Channel 0: output (request/lockout)

Channel 1: input (flag/acknowledge)

Channel 2: output (serial clock)

Channel 3: input (serial data)

This configuration is forced by the S4 output from M16 by inhibiting DVRN

and DVRP for channels 1 and 3.

For serial output the four group channels are used as follows:

Channel 0: output (request/lockout)

Channel 1: input (flag/acknowledge)

Channel 2: output (serial clock)

Channel 3: output (serial data)

This configuration is forced by the S8 output from M16 by inhibiting DVRN

and DVRP for channel 1.

117

- . .- -



3.4 SERIAL I/O DESIGN

A block diagram of the Serial I/O section is shown in Figure 39.

This section contains the logic necessary to implement the serial I/O func-

tion including parallel-to-serial and serial-to-parallel conversion, FIFO

buffering, and parity checking. Appendix B, Section 3-D contains a complete

schematic and parts list for the Serial I/0 section.

The function is performed by a combination of discrete logic and a

single LSI programmable Synchronous Serial Data Adapter (SSDA), the Motorola

MC6852.

The MC6852 circuit provides the functions of FIFO buffering, parallel-

to-serial conversion, serial-to-parallel conversion, and parity checking.

The control of the chip is performed by external logic and internal pro-

gramming. The MC6852 contains a total of 11 internal registers including

a 3 byte receive FIFO, a 3 byte transmit FIFO, 3 control registers, a

status register, and a sync code register. The ICA function uses all of

these registers with the exception of the sync code register.

The following discussion will reference the schematic diagram and parts

list in AppendixB, Section 3-D. The discussion will focus on the SERIO function

for Group A but applies as well to the SERIO circuitry in Group B.

The bit rate is selected through M14 at 200 Kbps, 40 Kbps, 20 Kbps,

or 10 Kbps. The address to M14 is programmed via the CLKRTJA and CLKRTIA

lines from the Group A ADCC logic. The clock rate selection is as follows:

Bit Rate CLKRT0A CLKRTIA

200 Kbps 1 1

40 Kbps 1

20 Kbps 10 1

10 Kbps 0

118

"jJ



w

w

0

z

a J 44
w(D J -40

jJJ

00

r' () -40 -0

I--

00

;4

L) 0~

-i N
0 u cr. Cl

cn c*4

Oc',

00 cnh~

119



The number of bytes of data to be transferred is programmed through

the WDCNTOA and WDCNTIA lines. These lines originate in the Group A ADCC

logic and are applied to MIl in the SERIO section.

Words WDCNT0A WDCNT1A

1 0 0
2 01
3 1 0

The SERIO circuitry can operate in three modes:

N* 1) Output Mode

2) Input, Refresh Mode

3) Input, Flag Mode

These modes are discussed below.

3.4.1 SERIAL OUTPUT

The serial I/0 circuitry transmits synchronous serial digital

output data in this mode. The circuit can be programmed to output 1, 2, or

3 bytes of information during a transfer. The transfer is initiated by

the LM by raising the STR/STP line. This raises the REQ/LOK line to

the subsystem. If the subsystem is able to accept data it responds by

raising the FLAG/ACKnowledge line (DIGINl) to the ICA. This initiates the

transmission of (N*9) clock pulses to the subsystem where N is the number

* of words programmed for transmission. The last bit transferred is the

parity bit for the last word. This bit is checked in the subsystem at the

last falling edge of the clock and the parity information is used by the

subsystem to set the final state of the FLAG/ACK line. The LM inspects

the End of Transmission (EOT) bit to determine when the transfer has been

120



completed. The LM can then determine the state of the FLAG/ACK line and

finally lower the REQ/LOK line to the subsystem. If an error occurred the

" LM can take appropriate action. The serial data originates at pin 6 of Ml

and is buffered through the appropriate signal I/O channel to the subsystem.

3.4.2 SERIAL INPUT-REFRESH MODE

The refresh mode is one of two input modes provided by the ICA.

This mode allows input to take place under control of the ICA through re-

quests on the REQ/LOK line. The data is transferred to the ICA and is

received by the FIFO memory in the MC6852. The process is similar to the

output mode in that (N*9) clock pulses are provided by the SERIO circuit

and the transmission is not completed until the LM has determined if a

parity error has occurred. Such error is detected by the LM by reading

the received words and their associated parity bits out of the FIFO memory

of the MC6852.

3.4.3 SERIAL INPUT-FLAG MODE

The flag mode allows the interfaced subsystem to initiate a data

transfer to the ICA. The SERIO circuitry must first be programmed for the

expected number of data bytes and the clock rate to be used with the trans-

fer. The transfer process is initiated when the subsystem raises the

FLAG/ACK (DIGINl) line to the ICA. This action causes the REQ/LOK line to

the subsystem to be raised in response and allows the programmed number of

clock cycles to be generated and sent to the subsystem. The clock is frozen

in the middle of the last programmed cycle so that the LM can check on the

parity bit state for each of the received words in the FIFO memory of the

MC6852. If the transmission is correct, the REQ/LOK line is lowered to

121



the subsystem by lowering the ERR line in the SERIO circuit. The last

clock edge is then produced through the CLKLOW line from the ICA and the

subsystem terminates the transmission cycle. If an error occurs during

reception, the CLKLOW line is lowered while the REQ/LOK line is still high

and the subsystem will be ready to retransmit the message.

The parameters and control bits required for serial transmission/re-

ception are specified in the serial control byte of the ICA configuration

buffers. This byte is set up in the data register of a Peripheral Inter-

face Adapter (PIA) and is illustrated in detail in Figure 40.

-1

%-J



SERIAL CONTROL

S ERR FLGR jWDCl CLKl JCLK EOT

SS - This bit controls the STR/STP line of the SERIO
circuitry. It is used to initiate (1) or terminate
( ) the serial reception/transmission.

ERR - This bit controls the ERR line in the SERIO circuitry.

FLGR - This bit controls the serial input mode: Flag (1)
or refresh (b

WDC0,- These bits control the number of bytes of data to be
WDC1 received/transmitted.

CLKO,- These bits control the clock rate used for serial
CLKI reception/transmission.

EOT - This bit indicates if the serial transmission is
complete (1) or not (.b).

Note: The CLKLOW line in the SERIO circuitry is controlled by
the CB2 peripheral output line of this PIA. CLKLOW isnormally low and is set high to provide the last clock
pulse, after which it is brought low again.

Figure 40 Serial Control Byte

123



SECTION 4

SUBSYSTEM INFORMATION CHANNEL

The Subsystem Information Channel (SIC) is a distributed memory system

that stores information pertaining to devices connected to a computer sys-

tem. The information for each device is stored in an electronic nameplate

physically located on that device. Thus it becomes simple to change a

system's configuration, since at initialization the processor may interrogate

the SIC to determine which devices are present and establish the interface

requirement for each device. The information stored in a device's nameplate

includes:

Device identification,

e Interface characteristics,

9 Data conversion programs,

* Calibration programs,

* Diagnostic programs,

* Failure/maintenance records written when in previous use.

The SIC consists of two major types of components (Figure 41 ):

o Electronic Nameplate (NP): The information storage unit
located on the peripheral device,

o Nameplate Interface Controller (NIC): An interface module
which resides in the processor chassis and enables com-
munication between the processor and nameplates.

Many subsystems consist of several modules, each with specific inter-

face requirements. In this case each module may be equipped with an

electronic nameplate containing information specific to that module. All

124

" . . . '-. . . . . . . .4' '" ' ' "'' '
" ' - I ' ' ; 7 ' : ' ) '

. ' ' ' " "-



Cl)

4J

4-A

0~

UU

U)-

125



7 7

lectronic nameplates within a subsystem are "daisy-chained" along an SIC

bus.

The Subsystem Information Channel is viewed as a distributed memory by

programs running in the processor. Programs may "read" the nameplate's

memory through the SIC by using SIC commands.

The following section gives an explanation of how to use the SIC and

later sections discuss the design of the parts of the Subsystem Information

Channel.

4.1 USE OF A SUBSYSTEM INFORMATION CHANNEL

This section describes the control and communication protocol utilized

by the subsystem information channel to access any of its electronic name-

plates. The communication protocol and its use are presented first. Use

of the control, status and data registers of the nameplate interface

controller is presented next. A structure for storing the information re-

siding in an electronic nameplate is presented at the end of this section.

4.1.1 ELECTRONIC NAMEPLATE COMMANDS

Control of a nameplate by a processor is accomplished through the

use of electronic nameplate commands. The nameplate receiving the command

:- sends a specific response to the processor acknowledging that the required

action has been performed. The nameplate commanda may be grouped into four

functional categories:

e Nameplate selection commands,

s, Read memory commands,

* Write memory commands,

. Nameplate diagnostic commands.

126

..........................................



4.1.1.1 Nameplate Selection Commands

The nameplate selection commands are used to establish processor

communication with one of several nameplates. The two commands "select

level 0 NP" and "select next NP" allow a program to sequentially select

nameplates on the SIC bus. This procedure starts with the nameplate near-

est to the processor which, by position, is assigned level A. Once a

nameplate is selected, it may be assigned an eight bit address which may

be used for subsequent random nameplate selection. This is accomplished by

the commands "assign NP address" and "select NP by address". During

initialization the sequential selection mode is used to assign nameplate

addresses. Thereafter a particular nameplate is selected usually by its

address.

The identity of the nameplate selected can be determined at any

time through the use of the command "read selected NP's address". Absence

of a response to this command indicates that no nameplate is selected.

Each nameplate sets its address to an invalid address (-1) whenever it is

reset. A nameplate can be reset by the processor via the nameplate inter-

face controller or whenever the nameplate's power or clock is absent.

Only one nameplate can be selected at a time. If a nameplate is

selected and a "select level # NP" command is issued, the selected nameplate

will deselect and the level 0 nameplate will become selected and respond

to the command. If a nameplate is selected and a "select next NP" is

issued, the presently selected nameplate deselects, and the next nameplate

on the SIC bus (further from the processor) becomes selected and responds

to the command. Note that the "select next NP" command has no effect if

no nameplate is selected. If a nameplate is selected and it is desired to

127



select another nameplate using the "select NP by address" command, the first

nameplate must be deselected using the command, "deselect NP", and then the

desired nameplate may be selected.

A bit in the nameplate status byte (the first byte of every re-

sponse) indicates if the responding nameplate is the last nameplate on the

SIC bus (i.e. the farthest from the processor). If the last nameplate is

selected and a "select next NP" command is issued, the last nameplate will

deselect and no nameplate will be selected thus no response will be issued.

4.1.1.2 Read Memory Command

Once an electronic nameplate is selected, its memory may be read.

The nameplate's memory consists of read only memory used for storage of

subsystem interfacing information and read/write memory used for storag74

of subsystem performance records. The command "read selected NP's memory"

allows the processor to transfer up to 256 bytes of data from the nameplate's

read only or read/write memory. This is accomplished by sending with the

command the starting address and number of bytes to be transferred. If

more than 256 bytes are required, additional read memory commands may be

issued each with a new starting address. Only if the starting address and

ending address (i.e. starting address + number of bytes requested) are

within the nameplate's memory boundaries will the data transfer request be

honored. Otherwise the nameplate's response will indicate an invalid

address status.

4.1.1.3 Write Memory Commands

Information may be stored in a nameplate's read/write memory

through the use of the "write NP memory" command. For the sake of security,

128



a write command to a nameplate will not be honored unless it is preceeded

by the "NP write enable" command.

. Data written into a nameplate's read/write memory is stored in

records. Each record consists of a 16 byte block. The starting address

of each record, sent with the write command, must start on a 16 byte

boundary (i.e. the last hexadecimal digit of the address must be zero).

*The last two bytes of each record are used to store a record checksum and

a record terminator. These bytes are inserted by the nameplate logic when

the record is written. Thus the maximum number of data bytes that can be

written into a record is fourteen. The most significant bit of the first

byte in each record is utilized as a record validity indicator. Modifying

this bit is the last operation performed in response to a write command.

This bit when set to zero indicates that the record is properly written.

Each nameplate may contain sixteen such written records at any

time. These records are written in non-volatile memory (i.e. the nameplate

may be powered down and the written information will be retained). The

starting address of the first unwritten record space (i.e. the unused

record space with the lowest address) may be obtained by using the command

"next available record address". An address of zero returned in response

to this command indicates that the nameplate's read/write memory is full.

A nameplate's read/write memory can be erased through the use

of the "erase read/write memory" command. The erase command is in the

write category of commands and therefore must be preceeded by the "NP write

enable" command. The present implementation of the electronic nameplate

does not support the actual erasure of memory. Receipt of the erase com-

mand is acknowledged by lighting the nameplate's erase indicator. The

129

. . .



nameplate's read/write memory must be removed from the nameplate board and

exposed to ultra-violet light for fifteen minutes in order to be erased.

Execution of the write (or erase) command requires approximately

one second. The nameplate will acknowledge receipt of these commands

immediately and will proceed to execute the write (or erase) action. Dur-

ing this time only the select, deselect commands and the "read selected NP

address" command will be accepted and executed. Other commands will be

rejected and the response will indicate "NP busy". However, if it is de-

sired to terminate a write (or erase) prior to its completion, the command

"abort selected NP" may be used.

The nameplate should be disabled from writing (or erasing) as

soon as the desired write (or erase) has been completed. This action will

avoid accidental modification of the read/write memory. The write disable

is accomplished through the use of "NP write enable" command with the

enable/disable flag not equal to one.

4.1.1.4 NP Diagnostic Commands

The last group of commands cause the nameplate to run a self-test

program. When the command "run NP diagnostic" is issued, the selected

nameplate will respond immediately and start execution of its diagnostic

routine. The diagnostic routine requires approximately 1/4 second of exe-

cution. During diagnostic execution only the select, deselect commands

and the "read selected NP's address" command will be accepted. Other

commands will be rejected with a status of "NP busy". Execution of the

diagnostic routine may be prematurely terminated with the "abort selected

NP" command. When the diagnostic is completed, the results may be read by

issuing the command "read NP diagnostic results". Figure 42 illustrates

130



First Result Byte

b7 b6 b5 b4 b3 b2 bl bK

DCG IROME I I RECE I IRAME ITIME 101

DGC: Diagnostic completed
ROME: ROM data errors
RECE: Read/Write records in error
RAME: RAM errors
TIME: Timer errors

Second Result Byte

b7 b6 bS b4 b3 b2 bl b0

ROM4 ROM3 ROM2 ROMI -FR - REC

ROM4: ROM number 4, address (5800-SFFF)16 , data errors
ROM3: ROM number 3, address (5000-S7FF)16 , data errors
ROM2: ROM number 2, address (48$0-4FFF)16, data errors
ROMI: ROM number 1, address (4000-47FF)16, data errors
FREE REC: Number of read/write records still available

NOTE: A one in the associated bit position indicates the
condition is true.

Figure 42 NP Diagnostic Result Data Bytes

131



the format in which the results are returned.

4.1.1.5 Command and Response Structure

The structure of all valid nameplate commands is presented in

Table 16. The same table also identifies the format of the response to

each command. Commands and responses have different numbers of bytes

depending on the amount of information required by the action requested.

Figures 43a and 43b show the message structure of various commands and

associated responses in terms of their byte contents. Note that the name-

plate status is always the first byte of the response. When an error is

encountered in the execution of a command the second (and last) data byte

of the response will diagnose the cause of the error. The structure of

the status bytes is presented in Figures 44a and 44b.

4.1.2 NAMEPLATE INTERFACE CONTROLLER REGISTERS

The nameplate interface controller is the controller circuit,

residing in the processor chassis, through which communication with name-

plates takes place. As viewed by the processor, the nameplate interface

controller appears as a set of memory mapped control, status and data

registers.

4.1.2.1 SIC Status and Control Registers

One of these registers, the SIC status register, reflects the

status of the subsystem information channel as shown in Figure 45a . Bits

7, 4 and 3 reflect the signal level of specific SIC hardware control lines.

Bits 2, 1 and 0 are outputs of the SIC clock divider circuit. Consecutive

reads of the status register should yield a changed value for bits 2, 1

and 0 if the SIC clock is functioning correctly. This value changes

approximately every 13.1 microseconds.

132



Table 16

NAMEPLATE COMMANDS

COMMAND RESPONSE

Instruction Data Status Data

1. Select level N/A NP status NP address

,,'NP

2. Select next NP N/A NP status Newly selected
NP address

3. Select NP by NP address NP status NP address

address

4. Deselect NP N/A NP status NP address

S. Assign NP Address to be NP status NP address

address assigned

6. Read selected N/A NP status NP address

NP's address

7. Read selected Number of NP status Number of memory

NP's memory memory bytes bytes, starting

wanted (0=256), memory address,

starting memory memory data

address

8. Write enable/ Enable/disable NP status NP address

disable flag (Enable=l)

9. Write memory Number of data NP status Starting memory

data bytes, starting address
memory address,
Data to be
written

10. Next available N/A NP status Address of next

address to be 
available write

written memory record

11. Erase read/ N/A NP status NP address

write memory

12. Run NP N/A NP status NP address

diagnostic

13. Read NP N/A NP status Diagnostic

diagnostic results

results

14. Abort selected N/A NP status NP address

NP

133

"w .." ' + ' . .. . .. : i ... ' . . .



VV

40 
i=

>14

4)

4 -J

MU "V

C)

4)4-I

cn in 0

$4 V)

Oa $4

in 
z z L 

LL

AQ im 134



], -. ... ..: .., . , -,. ., ..... .. ..- .- . . .. ,.. . . .. . ... . ... . .. . . ... .. .. . . .- .. . - . .] -.- . .

b7 b6 bS b4 b3 b2 bi bO

CER INPB LNP IWRE IDLA IWED IDTl D

CER: Command error
NPB: NP is busy
LNP: This NP is the last NP on the SIC bus
WRE: Error occurred on last write
DLA: Deselect acknowledge
WED: Write enabled/disabled flag (enabled=l)
DTl, DTO: Indicated type of data in response as follows:

CER DT1 Response Data

0 00 Nameplate Address

I Diagnostic Results

10 Memory Address Only

11 Memory Address and Memory Data

1 X X Error Diagnostic Byte

NOTE: A one in the associated bit position indicates conaition
is true.

p.

Figure 44a Nameplate Status Byte

135

.,.i. . .



b7 b6 b5 b4 b3 b2 bl bO

INC INA INW CER IINS

INC: Invalid command
INA: Invalid memory address (either starting or ending address)
INW: Invalid write (erase) request, write not enabled
CER: Communication error
INS: Another NP requested while this NP is still selected

NOTE: A one in the associated bit position indicates the
condition is true

Figure 44b Error Diagnostic Byte

136



b7 b6 b5 b b3 b2 bl b

PWR NPR R/C CL2 CLI CLA X X X 2

PWR: SIC power status (1=SIC power not present)
NPR: NP reset line level
R/C: RESP/CMD line level
CL2, CLI, CLV: SIC clock status bits

NOTE: A one in the associated bit position indicates the
condition is true

Figure 45a SIC Status Register

b7 b6 b5 b4 b3 b2 bI b' Address:

r"PW0 1 1 XNPR 1 1 XPIE 3

PWO: Power outage (or SIC disconnection) since last read of SIC
status register

NPR: NP reset control
PIE: Power outage (or SIC disconnection) interrupt enable

NOTE: A one in the associated bit position indicates the

condition is true

Figure 45b SIC Control Register

137



Figure 45b illustrates the SIC control register. This register

is used primarily for initializing the SIC status register and for resetting

all nameplates. The simultaneous reset of all nameplates is accomplished

by setting (to one) bit 3 (NPR) of the control register. As long as the

NPR biL is set, all nameplates will remain in the reset state. To enable

the nameplates after a reset is performed, the NPR bit should be reset (to

zero). The processor should wait approximately 40 milliseconds after re-

moving the reset signal before attempting to access a nameplate. This delay

is required to allow the nameplates to initialize.

The PWO bit will be set in the SIC control register whenever the

subsystem information channel loses power as a result of power supply

malfunctions or breaks in the SIC bus (e.g. on reconfiguration). The PWO

bit will stay set even if power returns to the SIC bus. This bit will be

cleared when the SIC status register is read. The PWR bit (bit 7) of the

SIC status register indicates the status of the SIC power at the time of

the read. Thus if power goes down and returns between readings of the SIC

status register, the PWR bit of the SIC status register will be zero in

both readings. However the PWO bit of the SIC control register will be set

to one indicating that a power loss has occurred. The SIC control register

*should always be read before reading the SIC status register since reading

,*. the SIC status register clears the PWO bit of the SIC control register.

*' An interrupt to the processor may be generated when the PWO bit is set to

one. The PIE bit (bit 0) of the control register controls the enabling

and disabling of this interrupt.

The SIC status and control registers should be initialized in the

following manner:

138

7 A



Si) write OA)16 to the SIC control register,

ii) write (0)6 to the SIC status register,

iii) write (36)16 to the SIC control register,

iv) read the SIC status register.

After this procedure is performed the SIC status and control registers' bit

functions are as indicated in Figures 45a and b.

Additional information on the functions of each bit in the SIC

control and status registers is presented in the nameplate interface con-

troller hardware schematics (AppendixB, Section 4-A and the data sheets on the

Motorola MC6821 peripheral interface adapter.

4.1.2.2 SIC Communication Registers

The sending commands and receiving responses from nameplates is

accomplished with the aid of two registers: the SIC communication control/

status register and the SIC communication data register. Figures 46a and

46b depict the format of these registers.

The SIC communication control/status accepts controls when written

and provides communication status when read. The R/C bit (bit 6) of the

SIC communication control register controls the direction of the data on

the SIC serial data bus. The SIC is enabled to send a command to the name-

plates by writing a zero into the R/C bit. The nameplates are enabled to

respond to a command when the processor writes a one to this control bit.

Two other important bits, RIE and TIE, are used to enable receiver buffer

full and transmitter buffer empty interrupts respectively. To initialize

the SIC communications, the value (3) should be written into the com-

munication control register.

139

.'A



Control Register

b7 b6 b5 b4 b3 b2 bl bA
': RIE R/C TIE 1 Address:

(write only)

RIE: Receiver data available interrupt enable
R/C: RESP/CMD enable control (I=RESP)
TIE: Transmitter empty interrupt enable

NOTE: To reset communications, write: 3.

Status Register

b7 b6 b5 b4 b3 b2 bi bg

IRQ OVR FE R/ 0_ TE RAddress:
I ! o__T xxx 4(read only)

IRQ: Interrupt present
OVR: Receiver data overrun error
FE: Receiver data framing error
R/C: RESP/CMD enable status (I=RESP)
TXE: Transmitter data register empty
RDA: Receiver data available

NOTE: A one in the associated bit position indicates the
condition is true

Figure 46a SIC Communication Control/Status Register

140



Receive Register

V7 b6 b5 b4 b3 b2 bi b Ades
DATA BYTE x xx s

(read only)

Transmit Register

b7 b6 b5 b4 b3 b2 bi b

DATA BYTE Address:
x xx5S
(write only)

NOTE: Data is in 8-bit bytes, no parity.

Figure 46b SIC Communication Data-Register

141



Reading the SIC communication control/status register will yield

the SIC communication status as indicated in Figure 46a

Command or data to be transmitted to a nameplate must be written

into the SIC communication data register (Figures 46b ). Transmission to

the nameplates will only take place if the R/C control bit is reset (i.e.,

command enabled). The response from a nameplate is read from the SIC

communication data register (Figure 46b). No response will be received

unless the R/C control bit is set to one (i.e., response enabled). The

processor should delay approximately 2.1 milliseconds after transmitting

the last byte of a command before enabling the response (i.e. setting the

R/C control bit to one). This action will assure that all bytes sent are

received by the nameplates.

A more detailed explanation of the functions of each bit in the

SIC communication registers is provided in the nameplate interface control-

ler hardware schematics (Appendix B, Section 4-A) and the data sheets on the

Motorola MC6850 asynchronous interface adapter.

4.1.3 NAMEPLATE'S DATA STRUCTURE

The electronic nameplate can be viewed as a component of a dis-

tributed memory system. The distributed memory (i.e., the nameplate's

memory) is used to store information related to the subsystem on which the

memory is attached. The design of the electronic nameplate places no

restriction on the data structure of information stored in the nameplate's

read only memory. The nameplate's read/write memory is used for storing

subsystem performance information. The read/write memory is organized in

terms of 16 byte records. Fourteen of the bytes in a record may be used

for data storage and are not restricted in format. A restriction is placed

142

i , '' '< ...' . ' . 's ,.-. i . -- . , , " .. . " . .i , . - . ,



on the most significant bit of the first byte of each record. This bit will

be set to zero by the nameplate logic if the record is written correctly.

The nameplate's memory format allows a variety of data structures

to be used for storage of subsystem information. In order to facilitate

information retrieval, the organization of subsystem data within a nameplate

should have a well defined structure. The rest of this section will dis-

cuss the nameplate's subsystem information storage structure for implemen-

tation of a subsystem information channel.

Each nameplate will have a directory in read only memory identify-

ing all information structures present in the nameplate. The format of this

directory is illustrated in Figure 47. The directory of any nameplate

* .starts at a fixed (known) memory address. The different information modules

which a nameplate may have in read only memory include:

. Subsystem identification,

- Subsystem interfacing characteristics,

e Subsystem I/O routines,

* Subsystem diagnostic/calibration routine.

The presence of each of the above modules in a nameplate's memory will be

identified with a corresponding entry in the directory.

The initial segment of each information module contains a header.

This header provides a physical description of the module. The information

in a header includes:

e Identification of the module,

* Size of the module,

e Address of the first executable instruction,

o Checksum for the module.

143



Fixed Address Nameplate (i.e. Subsystem) Identification

Directory ID Code

Number of Bytes
in Directory

Entry #1 ID Code

All Entries Entry #1 Starting
Have Same Memory Address
Form

Number of Bytes
in Entry #1

e!

Last Entry Read/Write Memory ID Code

Starting Address of
Read/Write Memory

Number of Bytes
in Read/Write Memory

Directory Checksum

,.,

Figure 47 Nameplate Directory Structure

144



The last entry in a nameplate's directory contains the starting

.address and size of the read/write memory area. The format of a subsystem

performance record written in the read/write area is shown in Figure 48.

The first byte is an identifier for the type of data in the record. Typical

record types include:

- Subsystem failure reports,

* Subsystem repair reports,

* Subsystem calibration results,

• Subsystem diagnostic results.

The eight unspecified bytes in a record may be used to store information

relevant to the action causing the recording (i.e. record type).

4.2 ELECTRONIC NAMEPLATE DESIGN

4.2.1 HARDWARE DESIGN

The design of electronic nameplates for the subsystem information

channel is based on a Motorola MC6801L processor. The electrical specifi-

cations for the nameplate are presented in Table 17. One should observe

that power for all nameplates is supplied by the SIC bus. Therefore the

SIC power supplies must be sized to handle the maximum number of nameplates

for a given application.

Theory of Operation

A description of the nameplate's operation can be made in terms

of the block diagram shown in Figure 49. The detailed schematic drawings

for the nameplate are presented in Appendix B, Section 4-B.

The majority of the logic functions required from the electronic

1454j

-o

2" ' ,i . '- "' ,' -. ' '- .. . . . < : ' . -. : ' . . .. ..-.



RCV 1  Record ID Code

Number of Valid Bytes

Julian Day

- Time in Hours, Minutes

Record Data

(8 bytes max)

Record Checksum

Record Terminator

RCV: Record Validity Bit

Figure 48 Subsystem Performance Record

146



Table 17

ELECTRONIC NAMEPLATE SPECIFICATIONS

CHARACTERISTIC SPECIFICATIONS

Power Requirements +5Vdc ±5% @ 1.2 Amps

+25Vdc ±5% @ 50ma

Input Signals TTL voltage compatible

Output Signals TTL voltage compatible

Operating Frequency 614.4 K Hz

Operating Temperature 0 to 700C

External Interfaces SIC Bus

147



4 w

j II 4a)

z
W N0

00

0. r=

z1 0,

0-

+ 40
oU

00

4J

00
_j ZZ cr ODco U
< no

0 0

6M

-7 0
0 7148



nameplate are performed by a Motorola MC6801Ll processor. This processor

is configured in its expanded multiplexed mode of operation and includes

the following operational elements:

e 6800+ CPU: Motorola 6800 processor with an enhanced
instruction set,

* 128 bytes of RAM memory,

e serial transmitter/receiver communication device,

a free running timer which can output software controlled
pulses and also measure times between input transitions,

" 8 bits of digital I/O.

Detailed specifications for the processor are provided by Motorola documen-

tation on the MC68OlLl.

All external signals required by the nameplate are pro-rided by

the SIC bus. These signals are shown on the left side of Figure 49. The

function of each major component identified in the nameplate block diagram

will be described in the remainder of this section.

Reset Circuit

When power is turned on or the SIC clock recovers from an inter-

ruption, this circuit causes the nameplate logic to reset. The reset

signal goes false approximately 30 milliseconds after the power and clock

are both present.

Serial Data Buffers

This logic circuit uses the RESP/CMD SIC bus signal to control

the direction of data flow to or from the SIC simplex serial data line.

149



Command Detection

This circuit detects when the RESP/CMD signal goes low indicating

the start of a new command from the system processor. This negative going

edge is latched, causing an interrupt in the 6801 CPU. The 6801 CPU clears

the interrupt through one of its 8 digital I/O lines.

Address Latch and Decoding

The expanded multiplexed mode of operation (mode 1) of the 6801

*multiplexes the lower 8 bits of address with the corresponding data bits.

Therefore the 8 lower order address bits must be demultiplexed with an ex-

ternal latch. Address lines A15 through A5 are then applied to a decoding

ROM that generates the chip select signals for various nameplate memory

components and control devices.

Write/Erase Control

This logic provides the capability to write 256 bytes of data on

an EPROM. This logic contains an 8 bit latch for holding the address and

an 8 bit latch for holding the data to be written. It also provides the

write control required to tri-state the EPROM from the nameplate's data and

address buses during programming. The write control also gates the MC6801

timer's 50 millisecond pulse and switches the +25 volt power as required to

program the EPROM.

The EPROM implementation of the read/write memory does not permit

electrical erasure. The erase control utilizes the 6801 timer to generate

a one second erase pulse. This pulse, in the present implementation, lights

an LED which is used for command verification.

150

. . . . . .



Priority Logic

The priority logic "ANDs" the PRIORITY IN signal from the SIC bus

with the signal THNPSELN (this nameplate is selected), an output signal

from the 6801 digital I/O port, to form the SIC bus signal PRIORITY OUTN.

The SIC bus connects to the nameplate in such a way that the PRIORITY OUTN

signal of one nameplate becomes the PRIORITY IN signal of the next nameplate

farther away from the system processor. If a nameplate is selected, its

*. THNPSELN signal is low. Thus the PRIORITY IN signals of all nameplates

farther away from the processor are low.

A line of the 6801's I/0 port is used to allow the nameplate's

software to test the value of its PRIORITY IN signal. When a nameplate's

PRIORITY IN signal is low, it indicates that some nameplate closer to the

system processor (i.e. a higher priority nameplate) is selected. The name-

plate sensing a low PRIORITY IN has lower priority and therefore must

function accordingly.

Another line of the 6801's I/O port, the LAST NP signal, is

checked by the nameplate's software to determine if it is the last name-

plate on the SIC bus (i.e. the farthest from the system processor). The

nameplate's PRIORITY OUTN signal passes through a current limiting resistor

before it is applied to the SIC bus. The LAST NP signal is connected to

the PRIORITY OUTN signal on the SIC bus side of this resistor. For all

nameplates that are not the last on the bus, the signal LAST NP follows

the signal PRIORITY OUTN. The SIC bus terminator, placed after the last

nameplate on the SIC bus, jumpers the PRIORITY OUTN signal to the SIC +5

volt power line. Thus in the last nameplate, the signal LAST NP will be

high even when the inputs to the priority logic circuit (THNPSELN and

151



"* PRIORITY IN) dictate the signal should be low. The nameplate's software,

by monitoring the inputs to the priority logic and this LAST NP signal, can

determine if it is the last nameplate on the SIC bus.

Status Display

These buffers are used to drive LED displays that indicate the

nameplate status. Some of the displays indicate the internal status of the

- 6801 and its software. The remaining LEDs are driven by important hardware

signals. Table 18 lists the status identified through LED displays.

SIC Bus

The SIC bus provides the medium for a processor to communicate

with one or more nameplates. Control of the bus by the processor is

achieved with the nameplate interface controller residing in the processor.

The SIC bus also supplies power and the clock for the nameplates. When

multiple nameplates are used they are "daisy chained" along the SIC bus

as illustrated in Figure 50.

The SIC bus must be properly terminated at the last nameplate.

This termination consists of two jumpers connecting the bus signals

BPRIORITY and BDISCONN to the +5 volt power line. The BPRIORITY jumper is

used to indicate this nameplate is the last one on the bus. The BDISCONN

jumper causes the corresponding bus line to be held high at the nameplate

interface controller. This will remain true until the SIC "daisy chain"

is opened. The nameplate interface controller uses this signal to detect

when a nameplate (and corresponding subsystem) has been replaced or recon-

figured. Table 19 identifies the signals comprising the SIC bus. Appendix

B, Section 4-B contains detailed information on the cable implementation.

152



Table 18

NP STATUS DISPLAY

LED NUMBER* STATUS DISPLAYED
-t

1 NP is busy

2 This NP is selected

3 SIC RESP/CMD bus line level (CMD=ON)

4 SIC SERIAL DATA bus line level

5 EPROM write strobe

6 EPROM simulated erase strobe

7 SIC PRIORITY IN bus line level (High=on)

8 NP Diagnostic is executing

*LED #1 is the left most LED, LED #8 is farthest to the right.

153



-

cot
CC,

'9a.
Z rn

154-



Table 19

SIC BUS SIGNALS

SIGNAL NAME FUNCTION

B02 CLK SIC system clock -2.4576 M41z

BPRIORITYN Nameplate priority status line

BSERIAL DATA Serial data communication line

BRESP/CMD Response/command enable line

BDISCONN SIC reconfiguration detection line

GROUND SIC ground (2 lines)

+5V SIC +SVdc logic power (2 lines)

+2SV SIC +2SVdc EPROM programming power line

155

i...............,



4.2.2 SOFTWARE DESIGN

The software of a nameplate consists primarily of one program,

entitled NPPROG, which executes as a continuous loop. Whenever a nameplate

is requested to run its diagnostic, the program DIAGPG runs "concurrently"

with the program NPPROG. In addition to the two programs, several inter-

rupt routines are used to perform functions requiring fast response.

A flowchart of the nameplate program NPPROG is shown in Figure

51. Table 20 gives a brief explanation of the subroutines called by

the program. Normal execution starts when the nameplate is reset causing

processing to vector to the start of NPPROG. The subroutine SYSINT ini-

tializes the nameplate's variables and devices. The READ subroutine will

wait for the communication interrupt handlers to receive a command and its

associated data. The wait by the READ subroutine is terminated when a read

complete flag is set.

The CMDEXE routine decodes the command and calls the proper

internal subroutine to execute the command and set up the proper data for

the response. Certain commands (write data, erase, and run diagnostic)

*require more execution time than others. The subroutines of CMDEXE

associated with long commands merely set up data and flags necessary for

the interrupt handlers (or diagnostic program) to perform the actual exe-

cution. The response to these commands is used to acknowledge their receipt

and the initiation of their execution. Thus the time from the reception of

the last of a command to the start of the response will always be the same.

Except for select, deselect and "read NP address" commands which are always

accepted and executed, all other commnands received while a long command is

being executed will be rejected by the subroutines of CMDEXE. Such commands

when received will result in a response with a "NP busy" status.

156



-. .. . . . . . . . . . . . . . . .

COMMENTS

NPPROG RESET Interrupt Vector

SYSINT Initialize System Variables

READ Get Received Command and
Data , Loop if DIAGPG
not Running or Read not
complete

N. N MD Y Diagnostic Program Active?

Resume Diagnostic Program
SCMDEXE RESUME or

Execute Command and set up; .' DIAGPG
Response

PTCheck if this NP has the
* highest priority of selected

N P's

WRITE If highest priority, send
response

,.NDL Deselect here on Deselect
Command otter response
sent.

Figure 51 Nameplate Main Program

157
. . .

.
°

•



Table 20

NAMEPLATE PROGRAM DIRECTORY

ROUTINE DESCRIPTION

NPPROG Main nameplate program, controls execution
of other routines

SYSINT Initialization routine

READ Transfers data from the receiver interrupt
handler's buffer to a command buffer

CMDEXE Decodes and executes commands
Checks if any NP of higher priority is
selected

WRITE Sends response to the SIC bus

CONDSL Deselects this NP if "deselect nameplate"
command was received

RESUME Resumes suspended diagnostic program

DIAGPG NP diagnostic program

SUSPEN Suspends the diagnostic program

.5

~158

.......................... . . . .,,.,



The PRITST subroutine is called by the main program to check the

PRIORITY IN line. If this line is low, a higher priority nameplate (i.e.

one closer to the system processor) is selected in which case this nameplate

must not send its response. The nameplate's timer is used to perform a

wait after the RESP/CXD line goes high and prior to the checking of the

PRIORITY IN line. This is to assure that all nameplates are synchronized

and thus the PRIORITY IN line is stable.

If this nameplate has highest priority (i.e. it is selected and

its PRIORITY IN line is high) the subroutine WRITE proceeds to send the

response set up by the CMDEXE subroutine.

If the command received is a deselect command, the subroutine

CONDSL will then proceed to deselect this nameplate. This assures that

when the nameplate is responding with a status of "deselect acknowledge"

it remains selected until the response is completely sent.

The program then returns to the READ subroutine to check for

another command. This loop executes continuously unless the nameplate's

diagnostic program DIAGPG is requested to execute. A flowchart for the

diagnostic program is presented in Figure 52. Through the use of the

subroutine RESUME and SUSPEN, the diagnostic program and NPPROG are able

to run "concurrently" as co-routines. Each of the programs NPPROG and

DIAGPG use these subroutines to relinquish CPU control to the other at

appropriate places in their execution. DIAGPG will execute for a time

then suspend itself allowing NPPROG to check for any commands received.

If there are none, NPPROG will resume the diagnostic program. As long as

there are commands received that need to be processed the DIAGPG program

must wait.

159

...........



COMMENTS

DIAGDT =°  Initialize DIAG Result Bytes

RAMTST Check NP RAM

SUSPEN Check for New Command
received by allowing
NPPROG to execute

TMRTST Check NP Timer

SUSPEN

ROMTST Check Rams

Checksum

SUSPEN
.4.

RECTST Check Write
Records Checksum

SUSPEN Control never returns
after this SUSPEN

END

Figure 52 Nameplate Diagnostic Program

160
..- -..4 - - - - - -o

". . - 4 - - - - 4 * - - . V. A 
4

2 C 4 2 . !



.,

Interrupt handling routines are used in the nameplate to perform

functions which are "transparent" to the main program. These routines are

listed in Table 21. All these routines process data buffers and set flags

to indicate their status of execution to the main program. Upon completion,

these routines return to the program at the point of interruption so that

the flow of the main program remains the same.

Communication between various routines is accomplished through

common areas. Tables 22, 23 and 24 identify the common blocks of vari-

ables and their functions. Not all routines need access to all common

variables, so the common area is divided into two local common areas and

a global common area.

Detailed program descriptions including flowcharts for the name-

plate software are presented in Appendix C, Section 4-A.

4.3 PROCESSOR INTERFACE TO THE SIC

In order to facilitate interaction of programs running in the pro-

cessor with electronic nameplates installed in the SIC, an interface con-

sisting of a hardware nameplate interface controller board and a software

SIC handler has been developed. The SIC handler consists of a set of

psoftware routines designed to perform all control and monitoring actions

required for communication.

4.3.1 NAMEPLATE INTERFACE CONTROLLER DESIGN

The nameplate interface controller (NIC) provides the hardware

resources required to interface the processor with the SIC bus. A block

diagram for the nameplate interface controller is presented in Figure 53.

Operational and interface specifications for the NIC are presented in

161



I I I ! _ I !- . . i -l i i .. . . . . ...*

Table 21

NAMEPLATE INTERRUPT HANDLERS

NAME INTERRUPT SOURCE DESCRIPTION

NPPROG RESETN Start execution of the main
program

CMDSTR IRQN from Initializes serial communication
RESP/CMD line to receive a command

RXDAT RDA of serial Stores incoming data bytes in
receiver temporary buffer

CMDSTP Timer Input Terminates command reception
Capture from
RESP/CMD line

WRTERA Timer Output Writes data to EPROM, or
Compare simulates memory erase.

162

.-.



Table 22

NPCOMM - NAMEPLATE GLOBAL COMMON

NAME SIZE(bytes) DESCRIPTION

T-NPSL 1 This NP selected flag

NPSTAT 1 NP status byte

ERSTAT 1 Error reason status

NPADDR 1 Assigned NP address

NPBUSY 1 NP busy flag

NPSYCT 2 NP synchronization count

CMD 1 NP command being processed

CMDDAT 18 Data for command

CMDCNT 1 Number of Data bytes received
with a command

TXCNT 2 Number of bytes in response

TXDATA 4 First 4 bytes of response

DIAGAD 2 Diagnostic program resume
address

DIADDT 2 Diagnostic result data

" DIAGSV 4 Diagnostic save buffer

1

I " 163



. .. ... - . . . . . . . - -

Table 23

RDCOmm- READ COMMAND LOCAL COMMON

NAM-E SIZE(bytes) DESCRIPTION

RDCOMP 1 Read complete flag

RDSTAT 1 Status of received data

RDBYCT 1 Number of bytes received

READBF 20 Temporary buffer for received

data

164



Table 24

WRTCOM- WRITE MEMORY LOCAL COMIMON

NAM1E SIZE (bytes) DESCRIPTION

WRTBUF 15 Data to be written

RECADR 2 Starting address of record to
be written

WRTPTR 1 Pointer into WRTBUF

DATTYP 1 Type of data to be written;
Erase memory, write memory
data, write valid record bit

WRTFLG 1 Write enable/disable flag

ERASCT 1 Count of time interrupts for
erase

WRTTRI 1 Write re-try count

165



OD

z
0

0 CA
w
(w wr

p 0

a.~

0-41

_ 4N

~r r

I' U

L.

N~ ~ 0 .

N Z 0 4

L4)

C-) L

00

x
LII 166



Tables 25 and 26. The NIC may be used in any processor's chassis

utilizing the Motorola EXORciser bus. The address space for the NIC con-

'" sists of 8 bytes (addresses XXXO through XXX7). Of these addresses, only

addresses XXX2 through XXX5 are actually used. The symbol X designates a

hexadecimal number (0 through F) in the address field that is user select-

able through switches.

Theory of Operation

This section provides a description of the nameplate interface

controller block diagram shown in Figure 53. Appendix B, Section 4-A contains

the detailed schematic diagrams for this controller.

Address Decoding and EXORciser Bus Buffers

The NIC is built on a MEX68USM Motorola Universal Support Module

which provides the address decoding and buffering of the EXORciser bus

signals. EXORciser bus address signals A15-A3 are decoded to generate a

chip select signal CSN. This signal and address lines A2, Al and AO are

used to specify the NIC register requested. Switches Sl, S2, and S3 are

used to select the upper three hexadecimal digits of the address. Switch

S4 should always be set to zero. One is referred to the MEX68USM user's

guide for the location of these switches and for detailed information per-

taining to the address decoding and bus buffering.

* Serial Communications

An LSI device, the Motorola MC6850 (ACIA), is used to convert an

8 bit byte of parallel data into a 10 bit serial data stream (on transmis-

sion) and to convert 10 bits of serial data into 8 bit parallel data (on

reception). The serial data is transmitted and received at a rate of 4800

167



Table 25

NAMEPLATE INTERFACE CONTROLLER SPECIFICATIONS

CHARACTERISTIC SPECIFICATION

Power Requirements +SVdc +5% @ 2.1 Amps

+12Vdc +5% @ 0.5 Amps

-12Vdc +5% @ 0.4 Amps

Input Signals TTL voltage compatible

Output Signals TTL voltage compatible

Operating Temperatur 0 to 700C

External Interfaces Motorola EXORciser Bus 1

SIC Bus 2

1 Refer to MC6800 EXORciser User's Guide.

%' 2 Refer to Appendix B, Section 4-B.

168

. . .-.."



. .n

Table 26

NIC REGISTERS'

ADDRESS 2 FUNCTION

X X X 2 SIC Status Register

X X X 3 SIC Control Register

X X X 4 SIC Communication Control Register

X X X 5 SIC Communication Data Register

1 See Section4.1.2of this document for a full explanation of the use of

these registers.

2 Xmeans this hexadecimal digit is switch selectable (0-F).

.69

.. 169

- - -.



baud. The ACIA also provides a modem control signal which is used to

implement the RESP/CMD signal of the SIC bus. This signal is used to con-

trol the operation of tri-state buffers which direct the flow of data on

the simplex serial data line of the SIC bus. One is referred to Motorola's

documentation on the MC6850 for more detailed information on its operation

and use.

Clock Generator and Divider

A 4.9152 MHz crystal and a clock generator integrated circuit are

used to generate a TTL compatible clock signal, called 2 CLK, of frequency

2.4576 MHz for the SIC bus. This frequency is then divided by 32 to create

a x16 clock for the serial co-mmunication ACIA. Also three divider outputs

(1/128, 1/64, 1/32) are input to the SIC status register so that consecutive

reads of the register may be used to determine If the clock circuit Is

functioning.

SIC Control and Status

An LSI device, the Motorola MC6821 (PIA), is used as the SIC

status and control registers. One of the PIA's 8 bit data ports is config-

ured as an input port and is used to monitor several important SIC signal

lines. This data port is called the SIC status register. The PIA's control

register associated with this data port, called the SIC control register,

controls the modes of operation of the SIC and generates a reset signal

for the SIC bus. The reset signal kills the clock signal going into the

SIC bus and causes the nameplate to reset.

LM Timer Circuit

Another function residing on the nameplate interface controller

170

-4

"' ' ' " ' ' - " : " " - " , =1 : i . . . : .



. . .

card is the LM timer circuit. This circuit divides the LM's 1 MHz system

4
clock by 10 to obtain a 100 Hz signal. This signal triggers an interrupt

through the PIA on the nameplate interface controller every 10 milliseconds.

4.3.2 SIC HANDLER DESIGN

A handler was developed to simplify the interface between tasks

running in the LM and the control registers in the nameplate interface

controller. A calling task requests a service (such as "load the name-

- .-- plate's directory") from the handler through an argument list. The handler

translates this request into a sequence of nameplate commands required to

perform the function. The handler also performs all the control and timing

actions required by the SIC communication protocol as described in the

preceeding sections. Use and theory of operation of this SIC handler are

presented in Section 2.3.5.

171



i, -".-..;

SECTION 5

LINK MANAGER

5.1 DESIGN OBJECTIVES

The Link Manager (LMG) Simulator described in this document is designed

to meet the following objectives:

1. Verification of Link Module (LM) operation, demonstration of all

functions proposed for the prototype LM.

2. Ability to exercise subsystems interfaced through the Interface

Configuration Adapter (ICA), thus verifying the operation of the prototype

ICA.

3. Different operational options:

(a) 'real-time' simulation with LM fast command stream from a

disk file. As soon as the execution of one command is

finished, the next command from the disk file will be given

to the LM.

(b) 'manual' operation of LM - commands input from a CRT

manually. The results can be seen in steps at the CRT.

(c) 'combined' operation - 'real-time' and 'manual' operation

can be switched back and forth.

(d) 'repetitive' operation - operations can be looped at high

speed for exercising and debugging.

172

'. .



4. Facilities to easily set up a simulation or repetitive test, or

set up a comand stream for 'real-time' operation.

5. Ease of use, with simplified procedures for operating the LMG

simulator.

6. Ease of modification. Software will be modular so as to facilitate

future modifications to the LMG simulator.

5.2 SOFTWARE DESIGN OVERVIEW

5.2.1 GENERAL FEATURES

In order to satisfy the objectives described in 5.1, the design

is approached in the following way:

1. The LMG simulator is comprised of two real-time tasks running

under the RSX-11M operating system on a PDP-11/70 computer. The Command

Interpreter task interprets and executes commands given to the LMG simulator.

The Shared Memory Display task interprets and displays the contents of

shared memory.

2. The high level language FORTRAN IV is used wherever possible.

3. Struct,.nved, modular programming techniques are employed for

ease of debugging and modification.

4. The simulator is interactive and conversational to facilitate

use of the system.

5. An output log file on the disk may be used to record all

transactions during a simulation. It can be used for debugging or demon-

stration purposes.

173



6. Some commands other than those of the LM and LMG, called

'Maintenance Port' (HP) conmmands, are defined to support the debugging and

-" demonstration features of the system. The LM, LMG and NP commands supported

are detailed in Section 5.3.

7. Two command input modes are offered. Commands can be input

*either from the CRT or a disk file. Commands and parameters input through

the CRT can be recorded to a disk file to be used at a later time as a disk

input command file for 'real-time' or repetitive simulations.

8. Indirect command files are used to facilitate the demonstra-

tion. The indirect command can contain all the commands and parameters

that are necessary for performing the demonstration.

9. The DEC DR11-C General-Purpose Interface Module is used as

* an interface to transfer data between the PDP-11/70 and the SM of the LM.

*, The DR11-C Driver is written in assembly language and is installed as a

loadable driver in the RSX-llM operating system.

5.2.2 STRUCTURE OF THE SIMULATOR

Figures 54 and 55 are system diagrams of the LMG simulator.

There are two tasks in the LMG simulator system: Command Interpreter (CI)

task and SM Display (SMD) task. The CI task contains four major modules:

command identification module, command execution module, local processing

module and SM handler module. The command identification module receives

and interprets commands. The command execution module includes the

Maintenance Port (MP) command routines, LMG command routines and LM command

routines.

174



0

r4

14 . T

00
44 V

C4

117



0 1r.

004

'-4

Cnon

00

J-J

U))

44 :1

olo

176



These routines execute specific functions of the MP, LMG and LM commands.

The local processing module includes data transfer routines to perform the

data transfer functions between the LMG and the subsystem. The shared

memory handler is a subroutine used to access the shared memory through the

DR11-C driver. The SMD task uses the DR11-C driver to read the data in the

SM, and then interprets it and displays it on the CRT.

The DR11-C driver is an I/O driver written for the RSX-11M oper-

ating system t: transfer data between the DR11-C and the SM in the LM.

Utility Library (UTILIB) is a collection of several utility routines shared

by the CI task and SMD task.

5.2.2.1 CI Task

The CI task runs on CRT #1. Commands and parameters can be input

from CRT or disk. The command identification module receives a command and

parameters, interprets it, and executes it by calling the appropriate com-

mand module. It echoes the command and parameters on the CRT if in disk

input mode, records the command and parameters to a new command file if in

creating command file mode, and records all the transactions during a

simulation to a log file if there is one open.

The command module gives command and parameters to, and handshakes

with, the SM by calling the SM handler to call the DR11-C driver. Some LMG

commands can be executed just by calling a sequence of the LMG modules. The

'LOCAL' command will cause the command identification module to call the

LP module to perfirm data transfer functions to/from the LM using the SM

handler and DRll-C driver.

5.2.2.2 SMD Task

The SMD task runs on CRT #2 to continually interpret and display

177



'AD-A124 621 THE REMOTE LINK UNIT: A DEMONSTRATION OF OPERTIONAL 2/2
PERFORMANCE PART III..(U) HOUSTON UNIV TX DEP OF
ELECTRICAL ENGINEERING C J TAVORA ET AL. AUG 81

UNCLASSIFIED AFAL-TR-8-ii3i-PT 3-i F33615 89 C-±895 F/G 07/2 N

soonson EN En

EEEEEEFhEhNIL)



.40

lim

y$ICRMcOPY RESOLUTION TEST CHART

* 
.~ j! 1ONA. BUREAU OF STANDARDS 1963A



tLe contents of the SM through calls to the DRll-C driver. The display of

the SM on CRT #2 is in an easy-to-read, interpreted format. Command name,

*i processing status, special conditions, and all the significant contents of

. the SM are shown.

5.2.2.3 Data Transfer Routines

The data transfer routines are application programs to perform

the data I/O functions. There are four kinds of data I/O: sequential in-

put, sequential output, refreshed input and refreshed output. The data I/O

*- task should be downloaded to the LM first. The LOCAL command causes one of

the data transfer routines to communicate with the data I/O task running in

* the LM to transfer data between the LMG and the subsystem.

5.2.2.4 Utility Routines

The utility routines contain many frequently used subroutines,

conmonly used by the CI task and the SMD task.

5.2.2.5 SM Handler and DR11-C Driver

The SM handler is a subroutine which has several entry points to

access different places in the SM using the DRII-C driver. The DRII-C

driver handshakes with the SM hardware to implement data transfer between

the LMG simulator (PDP-lI) and the LM.

5.3 COMMAND INTERPRETER (CI) TASK

Figure 56 is the structure of CI task. The CI task includes a main

:" program (command identification module) and many subroutines (for example,

LMG command routines, LM command routines, MP command rotines, LP module,

SM handler). It interprets couands and executes them through the appro-

178

d' - . ,"" " ' " - - .' - " " " " ' " ' " ' " " ' " " " ' " ," ' . ' ' - ,-. " " - .. '



44 4

... 0 E4

0 $
I--i

~40 C
PW 0 u E-4

I-I~ w~,uJ

ta -H "

u z "0

0

V 1)
>o Vo~ 0 1

da
411

079

. .. . . .



priate modules.

The CI task is initially in CRT input mode, and can be switched between

CRT and disk input modes. It can be directed to create a new command file.

Also, the action to be taken on errors, whether to stop or continue, can be

selected by the user.

The CI task performs initialization first. The initialization steps

include requests at CRT #1 for:

1. the cursor home up control characters for the terminal,

2. the type of transcript to the CRT desired for disk input mode,

3. the output log file name, if there is to be one.

The CI task is thenready for a command.

When the CI task receives a command, it first checks the validity of

the command. If the command is valid, it is given to the command execution

module for execution. If the command is a 'LOCAL' command, a data transfer

application subprogram will be invoked to perform the data transfer function

between the LMG and the subsystem.

If the input command begins with the character '@', it is an indirect

command file rather than a command. The indirect command file procedure

opens the indirect command file and processes it using the command process

module, as the dashed line indicates in Figure 56. If an error or failure

occurs, the CI task processes it to display the error or failure message.

The utility routines are used to support the CI task performing its function.

There are three categories of coumands: IXG command, LM function com-

mand and MP command. The LMG commands are listed in Table 27. The LM

function commands are listed in Table 28. The MP commands are listed in

180



Table 27

LMG COMMANDS

Command Function

SMDIAG Perform SM diagnostic function

LOCAL Request data transfer application
program to transfer data between
the LMG and the subsystem.

181

-" . ' % *,,"- . *. .-.. -,.: .,-,,..,;- . V '-.' , .,., -. ,. .- ..... .. *- . . . . . , * ,. . .. . . . . . . . .. . .



I I I I- I b . :.. . - " ... .;"L - .' - . '. .
,

-Ir

Table 28

LM FUNCTION COMMAND

.t* Command Function within LM

NOOP No operation

PRGMLD Load non-resident task

RUN Run non-resident task

STOP Stop non-resident task

CONFIG Configure selected subsystem

XFRTBL Transfer LM system tables to/from LMG

CANCEL Cancel the previous command that is pending

RESET Reset CMDITR and ICA

RESTRT Jump to power up restart location

STATUS Clear input buffer request bit and service
request bit in flag mode

NPINIT Request NP handler to initialize NP's

NPDIAG Same as NPINIT

182

.A * -. . . . .. *.. *.*w*-..** .

~~~~~~~~~~~~._. . . .,. -. ..- , - ,- -,, , -.-. " " '. " " """ .' " "" ' "" ""'" d" :-"".. . .. . ......... .. ."... ." "... .. ... **-- - - - - - - - .
"

."" 'l

Table 29 . All the commands that will access the SM utilize the SM handler.

A brief description of each command is given in the following. Full details

for using each command are given in the RLUDS User's Manual.

5.3.1 LMG COMMANDS

When the LMG simulator receives a LMG command at CRT #1, it will

execute this command by itself, or by issuing a series of LM function com-

mands to the LM, or by a combination of both methods.

1. SMDIAG: The SMDIAG command executes a diagnostic on shared

memory, verifying the ability to read from and write to the shared memory.

It also checks the hardware interrupt caused in the LM when the LMG writes

an LM function command into SM.

2. LOCAL: The LOCAL command causes a data transfer applica-

tion subprogram to perform data transfer between the LMG and the subsystem.

Before issuing the 'LOCAL' command, a data I/O task should be loaded to the

LM and run to communicate with the data transfer application subroutine in

the LMG.

5.3.2 LM FUNCTION COMMANDS

When the LMG receives an IM function command, it will request the

LM to execute this command. The LM will return the status of the command

execution and/or the results of execution to the 1MG.

1. NOOP: This command doesn't request the LM to take any

action. It is used to provide the LMG with a means of exercising the com-

mand handshake without causing anything to happen.

183

=' ~. . .-.

Table 29

1P COMMANDS

Command Function

CRT Input from CRT

DISK Input from disk

CLOLF Close an old log file and open a new one,
if wanted.

OPICF Open input command file

CLICF Close input command file

OPOCF Open output command file

CLOCF Close output coumand file

CREATE Creating Output Command File

NOCRET Stop creating output command file

STPERR Stop on error

CNTERR Continue on error

MPSTAT Output Maintenance Port Status

REWIND Rewind input command file

EXIT Exit program

WRITE Write data to SM

READ Read data from SM

DUMP Dump all the data in SM on the CRT

SETTIM Set PDP-11 system time to LM

5.1

!,184

2. PRGMLD: This command requests the LM to download a nonresident

task from the LMG or upload a nonresident task from the NP. The nonresi-

dent task can be a data I/O task or a subsystem diagnostic task.
4.

3. RUN: This command requests the LM to activate the non-

resident task in the LM.

4. STOP: This command requests the LM to terminate the run-

ning of the nonresident task in the LM.

5. CONFIG: This comand requests the LM to cause the ICA

handler to conf gure the ICA with configuration parameters from either the

LMG or the NP.

6. XFRTBL: This command requests the LM to transfer LM system

tables to or from the LMG. The LMG interprets any table obtained from the

LM and displays it on the CRT in an easy to read format.

7. CANCEL: This command requests the LM to stop the execution

of any other command already in progress.

8. RESET: This command requests the LM to reset the state of

the LM's CHDITR task and of the ICA hardware.

9. RESTRT: This command requests the LM to jump to its power

up restart location.

10. STATUS: This command clears the service request bit in the

* status alert byte and requests the LM to clear the input buffer request bit

in flag mode data transfers.

185

11. NPINIT: This command requests the NP handler to reset all

the NPs and cause each NP to run its internal diagnostic. The LMG inter-

prets and displays the diagnostic result on the CRT.

12. NPDIAG: This command is identical to the NPINIT command.

5.3.3 MP COMMANDS

MP commands implement features for debugging and demonstration of

the RLU system. They also implement utility functions in the LMG simulator.

1. CRT: This command directs that commands and parameters

will be input from the CRT.

2. DISK: This command directs that commands and parameters

will be input from the disk (an input command file).

3. CLOLF: This command closes an old output log file and

Sq allows the option to open a new output log file.

4. OPICF: This command opens an input command file for use

in disk input mode.

5. CLICF: This command closes the opened input command file.

6. OPOCF: This command opens an output command file for re-

cording the command stream (for future use as an input command file).

7. CLOCF: This command closes the opened output command file.

8. CREATE: This command puts the system into the creating

mode. All the commands and parameters will be recorded in the output com-

mand file.

186

. ..

|.,

9. NOCRET: This command puts the system into the non-creating

mode.

--... 10. STPERR: This command causes disk input mode execution to

stop if an error occurs. At the same time, the disk input mode will be

switched to CRT input mode.

11. CNTERR: This command causes disk input mode execution to

continue even if an error occurs.

12. MPSTAT: This command will display the maintenance port

status on the CRT. The HP status includes the files opened, stop-on-error

or continue-on-error condition, creating or non-creating mode, CRT input or

disk input mode.

13. REWIND: This command rewinds the input command file to the

beginning.

14. EXIT: This command closes all opened files and terminates

the CI task.

15. WRITE: This command writes a block of data in HEXASCII

format into the SM.

16. READ: This command reads a block of data from the SM and

displays it in HEXASCII format on the CRT.

17. DUMP: This command reads all the data in the SM and dis-

plays it in HEXASCII format on the CRT.

18. SETTIM: This command gets the time from PDP-11 system and

sets the time in the LM..

187

4'

5.4 SHARED MEMORY DISPLAY (SMD) TASK

The SMD task is a program written to con.inually interpret and display

the contents of the SM on a CRT. Figure 57 is the structure of SMD task.

The SMD task performs initialization first. The initialization steps

include requests at CRT #2 for:

1. The cursor home up control characters for the terminal.

2. The refresh rate for updating the SM display on the CRT.

At the user-selected refresh rate the entire contents of the SM will

be copied into a buffer in the SMD task using the DR1-C driver. Then the

SMD task interprets the data and displays it in HEXASCII on the CRT.

The format of the shared memory display is shown in Figure 58. The

information displayed includes:

1. The most recent LM function command name and its processing status.

2. Information on special conditions such as a service request, LM

alert, NP alert, ICA alert, LA alert and subsystem down.

3. Command and status bytes in HEXASCII format. The command bytes

include the LM function command and the data transfer command.

The status byte include LM function status, data transfer status,

status alert, LM status, NP status, ICA status, and LA status.

4. Contents of the LM buffer, I/O buffer I and I/O buffer 0 in HEXASCII.

5.5 DATA TRANSFER ROUTINES

The data transfer routines are application routines to transfer data

188

U)

4.10
*1. 4

r..V

0 0 E- W,
m. ~ 0 4

) Z) '4

a. U) 4.
L 41 Wr 0

w 0 0

I-4 40

0) 4.

0 10

cc)

189I

*LMCD
STATUS:#

SFFFIA[L CONDITIONS

CMIJ / STATUS:
LMF~C LM~FS t'XCM DXST STAL LMST NFST ICST LAST

LM BUIFFER

1/0 BUFFER 1

* I/Q FUFFER 0

Figure 58 Layout of Shared Miemory Display

190

.E I I! lii , ! . . . ,_ - -

between the LMG and the subsystem. A data I/O nonresident task should be

loaded into the LM from either the LMG or the NP. The nonresident task

handshakes through SM with the data transfer routines to perform data

transfer to or from LMG. There are four types of data transfers: sequen-

tial input, sequential output, refreshed input and refreshed output.

Figure 59 shows the protocol of the data transfer handshake. Figure 60

shows the structure of the data transfer modules. The details of each are

given below.

5.5.1 DATA TRANSFER HANDSHAKE PROTOCOL

Figure 59 shows the command byte and status bytes used in the

data transfer handshake. Cl is the data transfer command byte. Sl and So

are the data transfer status bytes.

The LMG begins a data transfer operation by performing a read-

modify-write on status by Sl. After the read portion, the LMG checks the

RDYO and RDY1 bits to see if Buffer 0 (output buffer) is available or

Buffer 1 (input buffer) is available. If the desired buffer is available,

the LMG sets REQO or REQ1 to indicate which is being taken and writes Sl

back to SM. It then writes Sp to SM to give the number of bytes (WSC) to

be transferred. After the data is transferred, the LMG writes command byte

Cl to SM, causiiig an interrupt. In Cl, 1OB indicates whether Buffer 1 or

0 is being released, and REF-1 if buffer being released is refreshed.

% 191

Data Transfer Command Word:

15 9 B 7 3

R B 1 1 I

Cl C0f

Data Transfer Status Word:

15 14 13 9 8 7 4

. sR R R R

[EY 1 fbufr 0 vial

, D E F E D WSC

y L Lf

',sl SO

Data Transfer Handshake:

3. LMG sends CO to LM, generatin an interrupt

°• LA = 4-bit Link Address

INIT = 1 to indicate initiation of message transfer

2. LMG performs read-modify-write on S

5.FLG I if subsystem is flagged as down
RDY = 1 if buffer is available

-: RDY1 1 if buffer 1 is available

REQ 1 to indicate buffer is being taken
REQ I to indicate buffer is being taken

'2 3. LMG writes So to LM (Output) or reads SO from LM (input)

• i WSC = word subcount, no. of words being transferred

-<4. LMG transfers data

:'.5. LMG sends Cl to LM, generating an interrupt

i',qERR 1 if an error was encountered
IOB I to release buffer 1, 0 to release buffer 0 (single-buffered 1/0)

REF -1 if buffer to be released is refreshed

Figure 59 Data Transfer Handshake Protocol

192

0)0

0)Q.

V 40

41 U)

Q0)

4))

4~44
w 0 0

0)

4).

0)

44
wj

1934

5.5.2 DATA TRANSFER MODULES

Following is the handshake sequence for each of the data transfer

modules.

5.5.2.1 Sequential Input

1. LMG requests input buffer (if RDYl-l and FLG-0, then LMG

sets RDYl- and REQl-l).

2. LMG reads the WSC (word subcount) and data from SM.

3. LMG issues STATUS function command to release buffer and

clear asynchronous service request.

5.5.2.2 Sequential Output

1. LMG requests output buffer (if RDY0- and FLG-0, then LMG

sets RDY0=0 and REQO=i).

2. LMG writes WSC and data into SM.

3. LMG writes data transfer command Cl (0016), causing an in-

terrupt to the LM to release buffer 0.

5.5.2.3 Refreshed Input

1. LMG requests input buffer (if RDYllI and FLG=I, then LMG

sets RDYl-0 and REQ-1).

2. LMG reads WSC and data from SM.

3. LMG writes data transfer command C1 (0316), causing an in-

terrupt to the LM to release the buffer.

194

.- ,, ., ., ', ' ; : ...',-..-' -.-. , • . ' . ' '" , . . .

5.5.2.4 Refreshed Output

1. LMG requests output buffer (if RDYO-1 and FLG-, then LMG

sets RDYO=O and REQ-1).

2. LMG writes WSC and data into SM.

3. LMG writes data transfer command Cl (0116), causing an in-

terrupt to the LH to release the buffer.

5.6 UTILITY ROUTINES

The utility routines are stored in a file called UTILIB. These rou-

tines are frequently used by or shared by other programs or subroutines.

They can be classified into general categories by their functions. These

general categories are described below.

5.6.1 DATA CONVERSION ROUTINES

These routines perform general purpose data conversion tasks:

1. Conversion between binary data and HEXASCII characters.

2. Conversion between BCD data and BCD ASCII characters.

3. Conversion between decimal values and 2's complement binary

or offset binary values.

4. Conversion of binary data to BCD ASCII characters.

5.6.2 DATA TRANSFER ROUTINES

These perform the following handshake protocol functions:

1. Request I/O buffer.

195

ILI . . t . t t. f. f. t-- - --. f

. .. -...-.. -.....

2. Read or write WSC.

3. Read or write data.

4. Write Cl to interrupt LM.

5.6.3 MISCELLANEOUS UTILITY ROUTINES

Some of the major functions performed by this last category in-

Sclude:

1. Wait and check the status of LM function command execution.

2. Clear service request bit.

3. Clear the screen of the terminal.

4. Check one bit of a byte.

5. Read a parameter and check whether its value falls in the

predefined range.

6. Logical function 'YES' to facilitate answering yes-or-no

questions.

5.7 SM HANDLER

The Shared Memory Handler (SMH) is a subroutine which provides many

entry points for other programs to call to access the SM. The SM has 256

bytes, with addresses from 0 to 255. Each SMH entry point implies a start-

*ing address for accessing SM through the DR11-C driver. The number of

bytes to be accessed and the function to be performed (read, write or read-

modify-write) are passed as arguments in the call to the entry point. Us-

ing symbolic entry points for each type of SM access relieves the calling

196

. *i

.i-

program of the responsibility for knowing any SM addresses or handshake

protocols.

5.7.1 SM HANDLER FUNCTIONS

Described below are the functions of each of the entry points of

the SMH listed in Table 30.

WFCMD: This entry point is used to write the LM function com-

*mand byte to the SM.

RFCMD: This entry point is used to read the LM function com-

mand byte from the SM.

RFSTS: This entry point is used to read the LM function status

byte from the SM.

WXCMD: This entry point is used to write the data transfer

co-mmand byte (Cl) to the SM.

RXCMD: This entry point is used to read the data transfer com-

mand byte from the SM.

RSI: This entry point is used to read the data transfer status

byte S1 from the SM.

WSI: This entry point is used to write the data transfer

status byte Si to the SM.

RWHSl: This entry point is used to do read-modify-write on data

transfer status byte Sl.

197

Q.. ...-......

Table 30

FUNCTIONS OF SMH

Entry Name Function

WFCMD Write LM function command byte

RFCMD Read LM function comnand byte

RFSTS Read LM function status byte

WXCMD Write data transfer command byte

RXCMD Read data transfer command byte

RSl Read data transfer status byte Si

WSI Write data transfer status byte S1

RWMS1 Read-modify-write data transfer status byte Si

WTxSx Write data transfer status byte S0

RTXSO Read data transfer status byte SO

WFBUF Write data to LM function buffer

RFBUF Read data from LM function buffer

WXBUF Write data to data I/O buffer

RXBUF Read data from data I/O buffer

RLASTS Read LA status byte

RICSTS Read ICA status byte

RLMSTS Read LM hardware status byte

RNPSTS Read NP hardware status byte

RSTSAL Read status alert byte

WSTSAL Write status alert byte

198
,:. . . .

WTXS0: This entry point is used to write the data transfer

status byte So to the SM.

RTXS0: This entry point is used to read the data transfer status

byte S0 from the SM.

WFBUF: This entry point is used to write data to LM function

buffer. The number of data bytes is limited to 64.

RFBUF: This entry point is used to read data from the LM func-

tion buffer. The number of data bytes is limited to 64.

WXBUF: This entry point is used to write data to an I/0 buffer.

Buffer 0 or buffer 1 can be selected. The number of data bytes is limited

to 64.

RXBUF: This entry point is used to read data from an I/0 buffer.

Buffer 0 or buffer 1 can be selected. The number of data bytes is limited

to 64.

RLASTS: This entry point is used to read the LA status byte from

the SM.

RICSTS: This entry point is used to read the ICA status byte

from the SM.

RLMSTS: This entry point is used to read the LM hardware status

byte from the SM.

RNPSTS: This entry point is used to read the NP hardware status

byte from the SM.

199

RSTSAL: This entry point is used to read the status alert byte

from the SM.

WSTSAL: This entry point is used to write the status alert byte

to the SM.

5.8 DRi-C DRIVER

The DRll-C driver is an RSX-11M I/O peripheral driver written in assem-

bly language. It drives the DEC DRll-C board which interfaces the LM with

the DEC PDP 11/70 that simulates the LMG.

The DR11-C board has two output control lines labled CSRO and CSR1 and

two input control lines labled AREQ and BREQ. The BREQ line is unused.

" The high order byte of the 16 data lines is used as the SM address. The

low order byte of the 16 data lines is used as the data for input or output.

Figure 61 is a diagram of the handshakes for read, write and read-

"* . modify-write operations. For the 'write' function, the driver sets CSRI

and puts valid address and data in the output register. Then the driver
S.1

sets CSR0 to initialize the data transfer. AREQ should be low before set-

ting the CSR0. The driver then exits and is recalled when AREQ goes high

generating an interrupt. The driver then resets CSRO and waits in a wait

loop for AREQ to return low. Timeout checks are wherever needed. The

'read' and 'read-modify-write' functions are similar to 'write', as indi-

cated in Figure 61. The flowchart for the driver is given in Appendix

C, Section 5-A.

5.9 DEMONSTRATION EXAMPLE

A serial RLU test example is given in this section to illustrate the

200

.. .

-- .:. ,,,. . n. nnao. . . -. e.I11 e U n nuunm nnmu

* ~ CSRI

4- in valid data

4- AREQ

-~CSRI

i ot (valid addr. S data

SCSRO

4-AREQ

(b)

-~CSRI _

-~out valid address

-~out
vldmdfe a

CSROr
4- in valid data

-: 4- AREC

(C)

Figure 61 Handshake between the LMG and LM for (a) read, (b) write

and (c) read-modify-write.

201

use of the simulator. Figure 62, 63 and 64 are indirect command files

named R2A.DEM, R2B.DEM and R2C.DEM, respectively. Figure 65 is a trans-

cript of CRT #1 during this example. Figure 66 shows the SM display on

the CRT #2 at three points in the example. Those characters with underlines

are input from the CRT.

In Figure 65 (a), the CI task does initialization before prompting

for a command. The first command @R2A leading with character @ indicates

that R2A is an indirect command file. The indirect command file R2A as

shown in Figure 62 is opened and the command stream in this file is exe-

cuted. Each line in the indirect command file is a command or parameter.

(If a line begins with the character ; or !, the CI task treats it as a

comment and ignores it.) Because the subsystem is not attached to the LM

at first, the return status from the NPINIT command is failure code -10.

At the same time, referring to Figure 66 (a), the'NP ALERT' message is

shown on the CRT #2 screen as a special condition to indicate that no sub-

system is connected to the LM. The LM function command NPINIT and return

status failure code -10 are also displayed on the CRT. The transcript is

displayed on the CRT #1 because of the selection of 'full transcript on CRT'

during the initialization. If 'brief transcript on CRT' is chosen, only

the commands and parameters will be displayed on CRT. If 'no transcript on

CRT' is chosen, nothing will be displayed on CRT except a return status of

'failure'.

Now we connect the serial subsystem to the LM and issue the @R2A com-

mand again. All the procedures performing the serial subsystem test can be

seen on the CRT #1 as shown in Figure 65b. The NPINIT initializes and

diagnoses the NP. The diagnostic result shows that the NP has 8 free re-

202

.-.

TEST. --ERTA-L INPUT/:IL'TFLIT (UP LOAD FROM NP)
I NPLIT: CGRCIUF E? OUIITPUT: GROUP A

'INTIT'AL.IZE N17'

'Ic~r EIC' ,Z FR!OM NP

PRI3ML P
DIO
NP

C; CCNF I GURE iiRi-UP A A%'. SERIA~L OIUTPULT FROt',1 NP

C:CIfNF T1G

A

;iCONFIG3LRE -r-.iIJP B A":-;SERI('L INPULT (F:LAC,, FRO'M NP

NP

!RUN N0.N-RES .I DENT TASK

ASV FOR L~C:CAL PROCESS;,ING TA':P.- SERIAL INPUT/O-UTPUT

LOFE.AL

; STOPF NON-FRES.IDENT TASK:

STOP

Figure 62 Indirect Coinand File R2A.DED4

203

z..............

-°

C

20

JI I I

NPRE '2
i::: R

,J

.o°: Figure 63 Indirect Comnand File 12.DEK

.

,204

,

.

-- .

--. .4m *I. -l. !. . *

RUN NON-RE:: I DENT TAI<K

RLIN

;C:<F OR LOCI'7L FRCIESS ING TA~;[- SER IAL I NPUIT /OUTPUT

I Ci

;S NF OCN-RE:&.IL'ENT TA,3..- AND RESET LM

STOP
RE SET

Figure 64 Indirect Comnand File R2C.DEK

205

* -N'- A O

H -:' AND AN.4ER.:. THE C!LESTION$ AEOlT
I H'T 1. tlR'.. HOMI" IP ICONTROL FOR' YOUR TERMINAL

EXAMPLE OF CONTROL CHARS FOR CLIRSiR HOME UP :
A A, A 1 1' CHAR --- 1E
AC:'T 4 1. CHAR i
DEC VT--52 2 :HAR$.:; --- 1B, 48

- HA, ZE 15(0 2 C:HARS 7E,12
HARD _-:COPY 1 CHAR --- 00

ft fCF CUN IROL I:.:HAR::

ENTER C.NT' CHAR.S IN HEXAS:III AZS XX, XX
::.:;

ELECT , NE OF THE FOLLOWING
NC TRANCRIF-r ON :RT
PRIFF TRANSC:RIPT ON CRT

* * . FL.. L RANSG:7-'RIF'T C,,j CR

D'- YOU.! WANT lO OPEN A LOG FILE "?(Y/N)Y
'IFEN OUTPIT LOG FILE
EN1TER FIIENAME
.ER I AL.TST
. rI OTPLIT LI.0 FILE "SERIALTST. LOG" IS OPENED $$$$
FNTER IDENTIFICATION
TFST :-:ERIAL iIP.::PSYSTEM

REMOTE LINK UNIT DEMOSTRATION (')
17:15:40 09-JAN-81

ID: TEST SLRIAL SUBSYSTEM

CMLI) @R2A
NPINIT
++-+++++.-+++++++.++++.++++++++++++++++++.++++++++++++++++++++++ 4. ++++-I

.* ENTER NFINIT CMt' MODULE ******

STATIS: FAILURE CODE: -10
... +++.++++++++++.++++.+++ +++++++++++++++++++++++.+++++.++++++1++++++"I 1-4 ++i

Figure 65 (a) Display on CRT #i

286

"" .. ~ -C. - . .. * * . ."' "" ' '""" ' " -' . 1 i- " l- " l'- "l 1 " i " i " ,

a:MLi> @RZA
• NFINIT

4.. -k.i.-.+. 4 ..1 .- +-. .+ .-p-p + ..++ . . ++ .+t

-**** ENTER NPINIT CMD MODLILE *****

NP DIAGNOSTIC RESULT
** DIAGNOSTIC COMPLETED

4 OF FREE RECORDS = E

S.STATUS: SUCCESS

-++++4 + 4+ .4 ++++++++++++++++++4++++. ++++++++++++++++++++++++++

F'RGMLD
+ ++ + --F + +----+ + 4 -++++4 + + 444444+4+444+4444 +4 +4++ + 4++ -4+ + -4+ + ++ + + + + +

****** ENTER PRGMLD CMD MODULE ******

DATA I/0 (DIO) OR S'UBSYSTEM DIAGNOSTIC (SSD) ?

FROM LMG OR NP ?
NP

S STATIS . -'
,+. .+. +++ + +++ .+ .+

CONF I1G

****** ENTER CONFIG CMD MODULE ******

FROM LMG OR NP ?

NP

GROLIP A OR B ?
A

..,TATUS: SUCCESS
%;;.:++++++4+++++++ +++++++++++++4+4444444++++++++++++++++++++++++++++++

.. "r:ONF I G
...++4+++++

-***** ENTER CONFIG CMD MODULE ******

.* FROM LMG OR NP ?
NP
GROUP A OR B ?
B

* STATUS: SUCCESS
r-. +++ +++++ 4 ++ ++++++++ + +++++ +++++++ +++++++++++++++++ ++++ ++ +++++

RUN

****** ENTER RUN CMD MODULE ******

STATUS: SUCCESS

IF:. LOC:AL

figure 65 ()Display an CRT #1

207

SELE:T ONE OF THE DATA TRAN.FER ROLITINE:-,
REFIN ALGIN SYNIN SINREF SAMDIN DINMOF
-:E.,!I N -;TNFLGi DI NMC-L.
'.fILIT ALi:-OUIT SYNOLIT D I SOUT SOLITA cOUTB
:YN!i . r CRTSIM

00 + 0 = i

-Y2 04 = 0036

04 = (m-) 1.3

-.:": j '.. ' EM DOWN

:z.TOF'

ENTER STOP CMD MODULE ****

:-:TATLI.:: FAILURE CODE: -11
..- ++. .++++ +++++++++ .++..++..++...++..++..++++.++..++... +.. ++.. + 4++++++ AF+++1-4

Figure 65 (b) (Continued)

U.

200

.9
. -... . . .

a-J t~'***"~i* ~* .

++ +I -f + + ... _. .'" "" "" "" """++

I I- - ." . - - . - "-.." ;' ' ; ",-

IiI
N ''.

4 f- Mr: @R.E-.'B
XFRT4L
4++4I ..+++++ + ++ + +.+++ +++++++ + + + + + + + + +++ + + + + + + + + + + + + + +++ + ++ + +. . . +* . + + + + . +++r

" ** * ENTER XFRTBL CMD MODULE ******

TAF:LE NAME ?
NPRE.:

AF:F., R WRITE (R/W) ?
W

OE,-:F, FUNCTOION (C) - 5)
. L.WRTREC 1 : EOD

•P: 2 OP- I E ACREC

4 F WREC 5 ERAWRT

-.4 # F RECORDB (- 16)

AT : J 9LICA:IZER SL
:-" +-I-++-f + ++++++ ++-t++-++-+++++++++ +++++++++-I-++4++ -4-++++++++++4--r++ ++++++.++++++-4

XFRTEL
-'+++++++++-F+++4 +++i+ ++++++++d-++++++ ++++++++++++++++++++++++4+ f ++

* *'**** ENTER XFRTBL CMDp MODULE ******

* TAILE NAME '
'," NF'REC

REFAD OR WRITE (R/W) "2

* R
-. # OF RECORDS (1 - 3)

3:A o7 09 00 18 05 07 FF FF FF FF FF FF FF 99 FF

-' REC ORD IL' CODE I 3A
'." SUIS-YSTEM FAILURE DETECTED
• .. # OF VALID BYTES 1 7

D.[ATE: JAN 9 (JAN 9 FOR LEAP YEAR)
/- : TIME: 18 :5 (HOUR:MINUTE)

IFigure 65 (c) D)iuplay on CUlt #1

,%:. 209

-. -- a

PLIN
,

4
- 1-, + 4, . 4 A.- - . +- -1 -+ + + + +- + 4. +.... . -++++++++++4,, +- - 1-++++ - 4il.- -i -.

o ENTC M FN .lI MCDLILE**

+ - -+ +-4 - + -i 4 -f .. 4 + + + + + + +++ +++++-. -. + l. - + + + t I-++++--t++-i -1-+

3L_ O CiF THE DAIR TRANSFER ROUTINES

F:-,-' ;CiIN E.NTN I" NREF A MADMI N I INMC-F
CE 11N I NIL i D'INMOIL

fIT-1- L17CLI CYNC'LT Di I SOUIT SO'JTA SOUITE
* ';NIC 1 I0 CRT I M

i~i-f CI I) (icnn

,++ +++- +-, 4 +++-+-+++-++,.-++++-++++-+++++-++++++++.+++-t+++++++++++++ +--+++t ++ ,4 4+

****ENTER -.TOP ClIP MODULE ***

++I++t +4 + .+...+.:+Y.+++++++ I+++++++ .+++++.++.+++++ I I ++.++++. +

RESET .+.++++++++++++++++++++++++++++ 41

**** .ENTER REE*T CM MODULE*

SAUC: : L I EE

END OF DEMONSTRATION

TT7 -- STOP

Figure 65 (d) Display on CRT El

210

.4

%7%

L 1*1-.MrP NF1 N) I T11I FAILUIRE -1C
* SFE ClAL C:ON['IT1ONS

NAF ALERTr
.7 C'ML / STATUS

LMRC: L IMRS LIXOM 'XST SI AL LMST N PS.T 1051 LA S T
F0t1) 0000 00 0000 0C:) C,)) 00 00

LM1 IF-tFER
01 cc 7 1 1 '? 00 00 (:0 (K:) GO ISE 07 FF F F F r FE FF-

FF FF :3 FF FL: FL: F: [DC F C FF P AL"O 70C Ff: F : FL:
74 l:CF::-:: 7C: FL FL DEl:: FC: F C: RD F8 B 74 FD F: F C
7CZ PC F 4 FC FC PC 9e F C. 76 RE [DC FL: F C Fr: FC Fr:

I')BUFFER 1
00 00 00 00' 00 00 FR EF 76 FR 00) 1 (89 00 FF EF
76 FR 00 1 07 '39 00 FR EF 76. FF 00 10Q 8 9 00, PP EF
76, RF of) 10C. :9 00 F F ERF 76 PF 00 10 85Y 00 FE ERF
7e(- PR 00 108 00 RE ER 76 FF 00 10: ES 00 PP EF

1/0i BUFFER 0
7 6. FEr 00 10 85, 00 FF EF 76 RF 0f) 0 8O3y 00 EF EU:
76 FR 00 10 C? 00O FF EF 76 FR 0 10 S,9 00 FR EF
76 FR 00 10 ":9 00 FR ER 76 FR 00 IC() 89 00 F F El-
71, FF 00 1 0 89 00 F F ER 76 FP 00 10 C)S 00 PPF E F

.,

Figure 66 (a) SM Display on CRT 12

211

ft-,'..." ,f~ttf.f-: . / - -T TU£ -

i LMFC:...:;1L L P=T lC .-;
ft,: f ' f.. . f - .. f. t f... F .,.O 0 0 .. 0 00 0 -C 0. 0 -Ot-

i]I ini;E:=** 1)

Lli:Ml': :-;TAt U.:-. STATLI : ;LJ:C:E$-
... I-C AL I-t'N.'IC i FN ;

*CML.': / :=;Fr TU: :

L I.iF C LMF DXCM DX:-;I :.;'A L LMST I C.:-: T ,
*; :E (1 c))) 0 10 5 0 0PC 000 0030 0400 0

Lr PLIFFER
01 CC' 01 00 00 00 00 00 00 18 07 FF FF FF FF F f-
FF FF 87 FF FC FC FC Dc F: FF B4 DC 7C FC FC FC.
74 F': F8 7C FC: F: EC FC f-C FD F8 BC 74 FL' F C FC
7C: PC F4 FC FC F.: 98 FC 76 FD' DC FC FC FC FC FC

].," BUFFER 1
0F, 10 04 36. 00 00 FF EF 76 FF 00 1 0 89 00 FF EF
76 FF 00 1 0 89 00 FF EF 76 FF 00 10 :89 00 FF EF
76 FF -0 10 89 00 FF EF 76. FF 00 10 89 00 FF EF
76 FF 00 10 89 00 FF EF 76 FF 00 10 8D 00 FF EF

I/C EL..IFFER 0
76 FF 00 10 89 00 FF EF 76 FF 0() IQ 89 00 FF EF
76 FF 00 10 C 9 00 FF EF 76 FF 00 10 8 0 0) FF EF
76 FF (-)() 1 0 89 00 FF EF 76 FF 00t) 10 89 (0 FF E F
7A. FF 00 10 89 00 FF EF 76 FF 00 1 0 89 00 FF EF

Figure 66 (b) S? Display on CRT 02

212

~~~............... ..-............- ..... .. .. .......... .. .... .,_-. . iL;:._:



t7-

rif' a '.'~-..T41LIS;: FA1L.URE -- 1
*--- I ':NEITYCiNS

DOlWN

L N.FL L MFS LIX!-N Dx ,T S T L LNST jp LtS
F5 M(: 00o OOo .~s L0 F::

f)1 02 0 1 00 00) 00 00 00) 00 18 07 FE FE FF FF FF
FE FF 87 EF FOC FO FO DC. FO FF S4 DC!- 70C* F:: FO F C
74 FC: P-3 7C. FlC: ED EC: F, FC. FDt F-8 BO 74 FL' FC, V-:

70 .C F4 FC* Fl FO: ..-S FO: 74. FE, DC: F.' F,:: C: FL, I:-L:
* ':'BUFFER 1

.Z;0)04 1_':(:1 00 P P EP 76 PP 00 10C 89 0(:'o FF LE
7'z. PF 00 10 -8 00 FF E F 76. F F 0-0 i10 69(0 FF FEF

6 PP (K0 10 89.- 00 PP EF 76 PP 00 1 0- 89 ('0 FF F
76- FF 0.)0 1(0 89 00 PP EP 76 FE* 00 10 (8D 00 F F FE

* 1 /f) EQJ-FFER 0
76 FE 00 10 89 00 FE EF 76,- FF 00 10( :3 : 00 FE EF
76- FR 0() 1 C:9 00 FF EF 76 FF 00 10 811 00 PP F

76 FE1 00 1 0 9O' FE 76 F F 00 1 90 PE
76. FF 00 1 0 9 ('0 FF EF 76 PP 1(0 89 010 PP E

Figure 66 (c) SM Display on CRT #2

.. 1

'°

-; -.."r .=; . -TTA U..,: FA L- R .-. - -



cords. The Data I/O task is uploaded from the NP. Group A and Group B of

the ICA are both configured from the NP. The nonresident data I/0 task is

executed by the RUN command. The LOCAL command offers a choice of data

transfer routines. In this example, the serial I/O (SIO) data transfer

routine is selected. Two numbers, an operator, and the result are trans-

ferred to the LMG and displayed on the CRT when the subsystem flag is

raised. For example, the first data transfer is displayed on CRT #1 as

09*04=0036. At the same time, referring to Figure 66 (b), we can see

these data in the input buffer (I/O Buffer 1)

Now we change the transmission parity of the subsystem. A 'subsystem

down' message is shown on CRT #1 and the data I/0 task stops running.

Therefore, the STOP comand gets return status failure code -11. This

failure code means that the nonresident task had already stopped running.

This same condition can be seen at CRT #2 as shown in Figure 66 (c).

In Figure 65(c), @R2B is issued to examine the time and cause of the

subsystem failure.

In Figure 65 (d), @R2C is issued after correcting the errors that

caused the subsystem failure. The Data I/O task restarts and the local

processing routine performs the data transfers. At the end of the demon-

stration, we stop the data I/O task and reset the ICA configuration. The

E(EXIT) command is used to end the demonstration.

214

°. ° •.... . . ..-" .. . ........ . .± , -



SECTION 6

SUBSYSTEMS

Subsystems are peripheral components that can be interfaced to an

avionic system through an LM. Two subsystems have been designed for the

RLU demonstration: a serial subsystem and a synchro subsystem. The former

sends and receives serial data, while the latter handles analog data in the

form of synchro voltages. Attached to each subsystem is a nameplate which

holds data pertaining to its subsystem. When the LM is connected to a sub-

system, it must be appropriately configured to be able to successfully

transfer data. The ICA configuration required for a subsystem is stored in

the subsystem's nameplate.

Each subsystem has programs stored in its nameplate which will run in

the L1 when the subsystem is connected. Each program enables data to be

input from the subsystem, performs certain operations on the data, and then

outputs the processed data to the subsystem.

Discussion of the design of each subsystem requires that three impor-

tant aspects be considered: the hardware of the subsystem, the related

software necessary, and the data stored in the corresponding nameplate.

This section will discuss these three aspects for both the serial and syn-

chro subsystems.

6.1 SERIAL SUBSYSTEM

This subsystem is capable of transmitting three 8 bit bytes as serial

data to the LM. It can also receive and display two 8 bit bytes from the

LM as serial data. The data to be transmitted can be set through thumbwheel

215

..................................



switches. The subsystem generates a parity bit for every byte of data to

be transmitted and is capable of performing a parity check on data received.

-' The data transfers are synchronous with the clock being provided by the LM.

Demonstration of the serial subsystem takes place by using the sub-

system as a calculator that performs additions and multiplications on

double-BCD-digit operands. Of the three bytes transmitted by the subsystem,

the first and third bytes define the double-BCD-digit operands, while the

second byte defines the operation. The LM performs the operation and pro-

duces a four-BCD-digit result. This result (two bytes) is then transmitted

by the LM and received and displayed by the subsystem.

6.1.1 HARDWARE DESIGN

The subsystem consists of two sections: the sending subsystem,

and the receiving subsystem. The sending subsystem can operate in two

modes - flag or refresh. In the flag mode data is transmitted only when

the STBSW switch on the panel is closed. Prior to closure of STBSW the

value of the thumbwheel switches can be set. On closure of STBSW, data on

the thumbwheel switches is latched until either the transmission is success-

ful, or the RESET switch on the panel is closed. In the refresh mode data

is t'ransmitted as soon as it is requested by the LM. Data is latched only

as long as the transmission takes places. Changes on the thumbwheel

switches are detected during the periodic transmission cycles initiated by

the LM.

The block diagram of the sending subsystem is shown in Figure 67.

A detailed drawing of this circuit is presented in Appendix B, Section 6-A.

block diagram there are two inputs REQ/LOK and SCLK from the ICA and two

outputs SDATA and FLG/ACK to the ICA. The ICA requests transmission by

216



.151~~~~~~~ co... 15. .. ..

Mi 4.M
-j 0(

o) o r
ot 0

>. 0 jU)
L- W 'm Al

'z Q -.I - %

*l 0I -

cxcc

IL.

a.CA

ALE

217



raising the REQ/LOK line. If MODSW is in the refresh mode the control logic

immediately responds by raising the FLG/ACK line. If MODSW is in '-he flag

"  mode, the control logic will raise FLG/ACK only when STBSW is closed. When

:" FLG/ACK goes high the data on the thumbwheel switches is latched into the

data latches by LOCKOUT.

When the ICA sees FLG/ACK high, it sends the clock pulses on

SCLK. The control logic uses SCLK to generate BITCOUNT and 'WORDSELECT'.

Depending on 'WORDSELECT' an 8 bit byte is selected from the outputs of one

of the three latches. 'BITCOUNT' determines which bit of this byte is to

be transmitted. That bit is output from the parallel to serial converter.

When the bit count goes to 9 the parity generator transmits the parity bit

in accordance with the PARITY selector switch. When 3 bytes have been

transmitted either of two things may happen depending on the mode. In the

refresh mode the last clock pulse goes low and then REQ/LOK goes low. This

sets LOCKOUT low and the data is no longer latched. On the other hand, in

the flag mode LOCKOUT needs to be high if the transmission was unsuccessful.

To keep LOCKOUT high the ICA brings REQ/LOK low first, and then brings the

last clock pulse low. This keeps the old data latched. If the transmission

was successful in the flag mode then the ICA brings the last clock pulse

low and then brings REQ/LOK low (similar to the refresh mode). LOCKOUT can

be set low also by closing RESET.

The second section of the hardware is the receiving subsystem.

The block diagram for the receiving subsystem is shown in Figure 68. A

detailed drawing of this circuit is presented in Appendix B, Section 6-A. As

shown in the block diagram, there are 3 input lines SDATA, SCLK, and REQ/LOK

from the ICA and one output line FLG/ACK to the ICA. When the ICA wants to

218



--- IV

4..

,'2,,
',00

m*

bb

i>-j *

%V4

-C" ad
444

0 ,.0
"-.

0 -.

400

2191

4. 219



display serial data it sets the REQ/LOK line high. The control logic im-

mediately responds by setting the FLG/ACK line high. When the ICA detects3.!,
that the FLG/ACK line is high it starts sending the clock pulses on SCLK

and simultaneously sends data on SDATA.

The serial to parallel conversion block accumulates 9 serial bits

with the help of the clock (SCLK) and sends them to the parity error detect

block. It also supplies the display with the 8 data bits. At the end of

9 bits WORDSTROBE goes high which allows the parity error detect block to

determine if there was a parity error in accordance with the parity select

switch. Also WORDCOUNT increments and enables the display to latch onto

the 8 bits and causes the data to be displayed. If there is a parity error,

ERROR will go high and the control logic will set FLG/ACK low, which will

stop the transmission. Also the line to the RX parity error LED will go

high and light the LED. If no error occurs, at the end of the next 9 bits

the cycle will be repeated.

For the subsystem to function properly it must have the sending

subsystem connected to one group of the ICA and the receiving subsystem to

the other group of the ICA. The connections to the LM are made through

the 4 1/0 lines at the buffers of each subsystem.

6.1.2 SOFTWARE DESIGN

For the subsystem to function as a calculator there needs to be

4 a software program running in the LM to perform the calculations. This

program is stored in the nameplate of the subsystem and runs in the LM as

a nonresident task.

A broad picture of the processing performed by this program is

given in Figure 69 . A detailed description of the program, subroutines

220

• .= % -,,." ' ., .,"-. -..- ,_ . . .. """"- . . . . . . . . . . . "" . ... . "" "" " " " "" ".'"." "" " "



COMMHENTS

set sm
WITIA0IZATIOtJ 61ffr fAcs

I N PUIT 6L yt {cr,

OpK~~krw Pte rA roLhoh

OUTPUTO.~~L

FiUre6TSraUIOPrga

2.bY~221

................................................
?



used, and common data referenced, appears in Appendix C, Section 6-A. The ini-

tialization procedure consists of setting up the shared memory flags for

receiving data. Once this is performed the program attempts to input data

from the subsystem through the ICA, which must be configured properly prior

to running the program. If the input procedure is successful, the program

will have three bytes of BCD data. The second byte defines operation: add

or multiply, while the first and third bytes define the operands. The pro-

gram proceeds to implement the operation by calling the math service of the

executive. First the BCD operands will be converted to binary and then the

operation will be performed. The result of the operation is finally con-

verted to 4 BCD digits. This result is output back to the subsystem through

the ICA. If the output procedure is successful, the program transfers the

input and the output bytes to the data buffer in shared memory.

If an error occurs during input or output transmission, the pro-

gram will immediately write a failure record into the subsystem's nameplate.

The record will contain the time of failure and the error type. Conse-

quently the program will stop execution.

For this subsystem the ICA needs to be configured as follows:

Group A - serial output, Group B - serial input (flag mode). The seven

configuration bytes for each group are in the nameplate and it is the duty

of the command interpreter to configure the ICA with these bytes, upon re-

ceiving the appropriate command.

For a detailed description of the program refer to Appendix

C, Section 6-A.

6.1.3 NAMEPLATE DATA

As was mentioned earlier, the nameplate holds the ICA configura-

222

. . . . .. . . , . . -. . . . , . . . ...- - . -. . . . . . . . .. .- . .. '.-,.-- .i .



tion bytes and the software program required by the subsystem to which it

is attached. The ICA configuration consists of 7 bytes for each group of

the ICA, totaling 14 bytes in all. The software program for the serial

subsystem consists of a total of 959 bytes. The header for this program is

also present in the nameplate and consists of 13 bytes. Lastly there is a

checksum byte at the end of the program. A map depicting how these elements

are stored in the nameplate is shown in Figure 70.

If an error occurs during an input or an output request of the

subsystem program, a failure record is written into the nameplate. Figure

48 shows the contents of a typical failure record.

6.2 SYNCHRO SUBSYSTEM

The synchro subsystem consists of an enclosure with two synchros. In

this subsystem, one of the synchros operates as an input device while the

other operates as an output device. The angle of the outputsynchro is

incremented by the angle of the input synchro periodically. This results

in a rotational motion of the output dial. The increments are made in 3

second intervals in order to meet the response-time limitations of the

synchro. The value of each angle is measured (input) or controlled (output)

in terms of three synchro voltages associated with the angle.

6.2.1 HARDWARE DESIGN

The hardware of this subsystem 'onsists of two synchros. It also

contains certain connections to the synchro windings which enable the syn-

: chros to operate properly.

The synchros used in the implementation have windings with the

configuration shown in Figure 71(a). Such a winding configuration charac-

223

mJ



a~j.coc, Utai site #a(97c.

ICA ro. A co.nfjuakion 3

ICA Gm. Bso~p~t~

#vf NPO., tjMib attLkUn 0

SI 3 }S4Rt d *e

,41 1 : NCrt

j4JeIe 0

~SI~b chcks7

U+4r addres

Figure ~ ~ ~ ~ 0 70ap fNmelt Dt frSrilSbsse

224c

.........................................



R3  R 1S3

(a) Differential synchro

SL

R]

~2. S3

(b) Transmitter synchro

VII

6F 4-44 k
Vim C Qz

* V2 S2 63

V3

(c) Modifications implemented

Figure 71 Synchro implementations

225



terizes a differential synchro, which is not suitable for this application.

What is desired is a transmitter synchro with windings in the form shown in

Figure 71 (b). Also, the voltages supplied to or sensed from the stator

windings should correspond to phase voltages. However, the synchro stator

does not have an accessible ground connection. Therefore a ground is

created through a resistor network between the windings. These modifications

are shown in Figure 71(c) which shows a winding wiring which is equivalent

to the synchro shown in Figure 71(b). The capacitor between the two rotor

windings is used to reduce the power factor of the windings.

6.2.2 SOFTWARE DESIGN

As mentioned earlier, to demonstrate the functioning of the sub-

system, the angle of the output synchro is incremented periodically every

3 seconds. The value of each increment is determined by the angle set on

the input synchro. To perform this demonstration a software program must

run in the LM. This program is stored in the electronic nameplate and is

loaded into the LM as a nonresident task.

A broad picture of the processing performed by this program is

given in Figure 72. A detailed description of the program, subroutines

used, and common data referenced, appears in Appendix C, Section 6-B. The ini-

tialization procedure consists of setting up the shared memory flags for

receiving data and initializing the ICA for synchro operation. Once this

is done the program inputs the three synchro voltages of the input synchro

through the ICA. The voltages are input in the form of three single byte

binary values of an ADC. The three voltages are tested to determine if

the synchro is malfunctioning or not. The first test checks if the sum

of the three voltages is zero. The second test calculates the value of

226

-J

.4. .

: ':';. :::-: .;::- -::----:::::: ::: : -: .: ,,:;J' *** * *, :i J- J,



-7,1

5YvucNRD VOLTA 11S

rcsrsv es

14PWR eY)Ar ars

IIT

Sy-ffgur 72 Sychoi/ Pog

227



the synchro constant 'A' by calling upon the executives math service, and

compares it with the nominal value. If the voltages fail any of these

tests, the program writes a failure record into the subsystems nameplate

and exits. A typical failure record is shown in Figure 48

If the tests are successful, the program determines the input

synchro angle from the three voltages by using the math service of the

executive. It then adds this angle to the previous angle of the output

synchro. Next it uses the executive's math service again to determine the

three synchro voltages corresponding to the resulting output angle. Finally

the program outputs the three synchro voltages to the output synchro, writes

the input and output angles into SM, and waits for 3 seconds before it

repeats the procedure.

6.2.3 NAMEPLATE DATA

The nameplate holds the ICA configuration bytes and the software

program required by the subsystem. The configuration is 7 bytes for each

group - 14 bytes in all. The software program for the synchro subsystem

consists of 1061 bytes. The header for the program is also in the nameplate

and consists of 13 bytes. A map depicting how these elements are stored in

the nameplate is shown in Figure 73.

-.

°.-

N - .. 228

2.l



IC Qfra. aqqtraio

46-0484

Fgre 3 Mpo aepaeDt rSycr usae

22 W4 MP0W 6WtdWCL m SSO6/7

4-Ors 7



modes - flag or refresh. In the flag mode data is transmitted only when

the STBSW switch on the panel is closed. Prior to closure of STBSW the

value of the thumbwheel switches can be set. On closure of STBSW, data on

the thumbwheel switches is latched until either the transmission is success-
[ ful, or the RESET switch on the panel is closed. In the refresh mode data

is t'ransmitted as soon as it is requested by the LM. Data is latched only

as long as the transmission takes places. Changes on the thumbwheel

switches are detected during the periodic transmission cycles initiated by

the LM.

The block diagram of the sending subsystem is shown in Figure 67.

A detailed drawing of this circuit is presented in Appendix B, Section 6-A.

block diagram there are two inputs REQ/LOK and SCLK from the ICA and two

outputs SDATA and FLG/ACK to the ICA. The ICA requests transmission by

216

.4I


